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2Introduction

In the study of analytic problems at regular points, analytic solutions
(convergent power series) generically exist. It is at singular points where formal
(divergent) solutions appear.

Example (Irregular singularities of ODEs)

The equation

xp+1 ∂y

∂x
(x) = F (x, y) = c(x) +A(x)y + · · ·

admits a unique formal power series solution ŷ =
∑∞
n=0 anx

n, when A(0) is
invertible. It generically holds that

|an| ≤ CAnn!1/p.
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Example (Singularly perturbed problems)

The doubly singular equation

εσxp+1 ∂y

∂x
(x, ε) = F (x, ε, y) = c(x, ε) +A(x, ε)y + · · · ,

as before has a unique formal solution

ŷ(x, ε) =

∞∑
n,m=0

an,mx
nεm, |an,m| ≤ CAn+mmin{n!1/p,m!1/σ}.

Example (PDEs with normal crossings)

Lλ := λ1x1∂x1 + · · ·+ λdxd∂xd , xα1
1 · · ·x

αd
d Lλ(y) = F (x, y),

|aβ | ≤ CA|β|min{β1!1/α1 , . . . , βd!
1/αd}.
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4The correct source of divergence

In these type of problems a correct choice of the main variable gives the source
of divergence of the solution.

In general, working in (Cd, 0) with coordinates (x1, . . . , xd), fix a germ
P ∈ C{x} with P (0) = 0.

Roughly speaking, f̂ ∈ C[[x]] is a P -s–Gevrey series if we can write

f̂ =
∞∑
n=0

fn(x)P (x)n, where sup
x∈D
|fn(x)| ≤ CAnn!s.

For the case P (x) = xα this precisely means that

|aβ | ≤ CA|β|min{β1!s/α1 , . . . , βd!
s/αd}.

I J. Mozo-Fernández and R. Schäfke, Asymptotic expansions and summability with respect to
an analytic germ, Publ. Mat., 63, 3–79 (2019).
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5Families of singular PDEs

Theorem (2020)

Consider the analytic PDE

P (x)L(y)(x) = P (x)

(
a1(x)

∂y

∂x1
+ · · ·+ ad(x)

∂y

∂xd

)
= F (x, y),

where x ∈ (Cd, 0), y ∈ CN , F (0, 0) = 0 and DyF (0, 0) is invertible. If

P divides L(P ),

the equation has a unique solution ŷ ∈ C[[x]]N which is 1–Gevrey in P .

I S.A. Carrillo, A. Lastra. Formal Gevrey solutions - in analytic germs - for higher order
holomorphic PDEs. Math. Ann. (2022) doi 10.1007/s00208-022-02393-w.
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6Singularly perturbed and doubly singular ODEs

Consider

Q(ε)xk+1 ∂y

∂x
= F (x, ε, y).

I For k = −1, Q(0) = 0, choose

P = Q(ε), L = ∂x, L(P ) = 0, Q(ε)-1-Gevrey solution.

I For k ≥ 0, take

P = xkQ(ε), L = x∂x, L(P ) = kxkQ(ε), xkQ(ε)-1-Gevrey solution.

This recovers the well-known case Q(ε) = εq.

I Canalis-Durand M., Ramis J.P., Schäfke R., Sibuya Y. Gevrey solutions of singularly
perturbed differential equations. J. Reine Angew. Math, vol. 518, (2000) 95–129.

I Canalis-Durand M., Mozo-Fernández J., Schäfke R. Monomial summability and doubly
singular differential equations. J. Differential Equations, vol. 233, (2007) 485–511.
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7A simple strategy: lifting the dimension by one

Set Ŵ (x, t) =
∑∞
n=1 ynt

n, where ŷ(x) =
∑∞
n=1 ynP

n, i.e,

ŷ(x) = Ŵ (x, P (x)).

We can assume the equation takes the form

P · L(y) = g0(x) +B0(x)y +H0(x, y), (1)

where g0 = P · h0 and B0(x) is invertible at x = 0. Then, observe that

P · L(ŷ) =
∞∑
n=1

L(yn)P
n+1 + φ · nynPn+1 =

(
tL+ φt2∂t

)
(Ŵ )

∣∣∣
t=P

,

where L(P ) = φ · P . Therefore, ŷ solves (1) if and only Ŵ solves

B0(x)W = −h0 · t+
(
tL+ φ(x)t2∂t

)
W −H0(x,W ). (2)

Classical theorems shows (2) has a unique solution Ŵ (x, t) which is 1-Gevrey.

I Gérard R., Tahara H.: Singular nonlinear partial differential equations. Aspects of
Mathematics. E28. Wiesbaden: Vieweg. viii (1996).



S. Carrillo — q-Nagumo norms and formal solutions of singularly perturbed q-difference equations

8The Nagumo norms

The classical Nagumo norms are defined for f ∈ O(Dr) and m ∈ N as

‖f‖m := sup
|x|<r

|f(x)|(r − |x|)m.

These are useful to establish convergence/Gevrey type of solutions of
differential equations and singularly perturbed problems.

I. ‖f + g‖m ≤ ‖f‖m + ‖g‖m and ‖fg‖m+k ≤ ‖f‖m‖g‖k.

II. ‖f ′‖m+1 ≤ e(m+ 1)‖f‖m.

I Nagumo M. Über das anfangswertproblem partieller differentialgleichunge, Jap. J. Math. 18
(1942), 41–47.

I Canalis-Durand M., Ramis J.P., Schäfke R., Sibuya Y. Gevrey solutions of singularly
perturbed differential equations. J. Reine Angew. Math, vol. 518, (2000) 95–129.
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9An example from analytic flows

Let X = (X1, . . . , Xn) ∈ C{z}n be a vector field in (Cn, 0). The dynamics of
X is determined through its flow φX(t, z), which is the solution of the
differential equation

∂tφX(t, z) = X(φX(t, z)), φX(0, z) = z. (3)

Consider the auxiliary problem

∂tw(t, z) = Dzw(t, z) ·X(z), w(0, z) = z.

Setting

w(t, z) =

∞∑
m=0

ϕm(z)
tm

m!
,

we find ϕ0(z) = w(0, z) = z, ϕm+1(z) = Dzϕm(z) ·X(z), m ≥ 0.
Therefore ϕm(z) = Xm(id)(z) = (Xm(z1), . . . , X

m(zn)).
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Considering

W (τ) :=

∞∑
m=0

‖ϕm‖m
τm

m!
,

we see that
‖ϕm+1‖m+1

(m+ 1)!
≤ ‖Dzϕm‖m+1

(m+ 1)!
‖X‖0 ≤ nern−1‖X‖0

‖ϕm‖m
m!

. Thus

‖ϕm‖m
m!

≤ ‖ϕ0‖0αm, α := nern−1‖X‖0.

Theorem
The problem (3) admits a unique analytic solution φX(t, z) ∈ C{t, z}n which is
given by the Lie series

φX(t, z) =

∞∑
m=0

(Xm(z1), . . . , X
m(zn))

tm

m!
.

I Carrillo S. A. A quick proof of the regularity of the flow of analytic vector fields, C. R.
Mathématique (2021) 359(9), 1155-1159.



S. Carrillo — q-Nagumo norms and formal solutions of singularly perturbed q-difference equations

11Interlude on M -sequences

Let M = (Mn)n∈N be a sequence of positive numbers. We consider the
following conditions:

1. (Log-convexity) M2
n ≤Mn−1Mn for all n ∈ N>0, i.e., m is a

non-decreasing sequence.

2. (Moderate growth) Mn+m ≤ An+mMnMm for all n,m ∈ N, for some
constant A > 0.

Recall that moderate growth implies the existence of δ,A > 0 with

Mn ≤ Ann!δ.
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12M -series in a monomial

The natural extension would be to say that f̂ is a M−series in the monomial
xα if there is r > 0 and B,D > 0 such that

‖fα,n‖ ≤ DBnMn, n ∈ N.

Assuming that M has moderate growth, this is equivalent to the existence of
C,B > 0 satisfying

|aβ| ≤ CB|β|min(M
1/α1
β1

, . . . ,M
1/αd
βd

), β ∈ Nd.

What happens if not? For instance,

Mn = qn
2/2, qn(n−1)/2, qn(n+1)/2.
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13Review on q-calculus

This type of Calculus replaces the usual derivative by the discrete analogue

dq(f)(x) :=
f(qx)− f(x)

qx− x , q ∈ C \ {0, 1}.

In this framework we have q-analogues to classical coefficients, functions and
analytic equations.

These are expected to be confluent to the usual versions as q → 1.

Another operator that is more common in the literature is

σq(y)(x) := y(qx).

I J. Cano, P. Fortuny-Ayuso, Power series solutions of non-linear q-difference equations and
the Newton-Puiseux Polygon (2012) arxiv.org/abs/1209.0295.

I C. Zhang, Sur un théorème du type de Maillet-Malgrange pour les équations
q-différences-différentielles, Asymptot. Anal. 17, no. 4, 309–314 (1998).

I L. Di Vizio, Ch. Zhang, On q−summation and confluence, Ann. Inst. Fourier 59, No. 1,
347–392 (2009).
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14The q-Taylor formula

If n ∈ N, then

dq(x
n) =

(qx)n − xn

(q − 1)x
= [n]qx

n−1, [n]q :=
qn − 1

q − 1
= 1 + q + · · ·+ qn−1.

Therefore, for any formal power series f(x) ∈ C[[x]] and |q| 6= 0, 1 we have that

f(x) =
∞∑
j=0

djq(f)(0)

[j]!q
xj , [n]!q := [1]q[2]q · · · [n]q.
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15The non-singular case

Theorem
Let q > 0 where q 6= 1. The problem

dq(y)(x) = a(x)y(x) + b(x)y(qx) + c(x), y(0) = y0, (4)

where a, b, c ∈ C{x} has a unique analytic solution ŷ ∈ C{x}.

Example (q-exponential maps)

dq(y)(x) = y(x), y(0) = 1, eq(x) :=

∞∑
n=0

xn

[n]!q
,

dq(y)(x) = y(qx), y(0) = 1, Eq(x) :=

∞∑
n=0

qn(n−1)/2 xn

[n]!q
.
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16q-Euler’s equation

Consider the q-analogue to Euler’s equation

x2dqy(x) + y(x) = x.

It has a unique formal solution

Êq(x) :=

∞∑
n=0

(−1)n[n]!qxn+1,

which is divergent for q > 1. In fact, note that

n ≤ [n]q ≤ nqn−1, n! ≤ [n]q! ≤ n!qn(n−1)/2.

Letting q → 1+, Êq(x)→ Ê(x) :=
∑∞
n=0(−1)

nn!xn+1.
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17Another q-difference equation

Consider the problem
xσq(y)(x) = y(x)− 1.

It has the unique formal power series solution

∞∑
n=0

qn(n−1)/2xn.

In terms of dq we have the problem

(q − 1)x2dq(y)(x) = (1− x)y(x)− 1.

In the limit q → 1+, the solution becomes the geometric series.
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18q-Gevrey series

Let s ≥ 0 and q > 1. A series f̂ =
∑∞
n=0 anx

n ∈ C[[x]] is q-s-Gevrey if there
are B,D > 0 with

|an| ≤ DBn
(
qn

2/2
)s
, n ∈ N.

We have the limit

lim
n→+∞

[n]!q/
q

n(n−1)
2

(1− 1/q)n
=

∞∏
k=1

(
1− 1

qk

)
.

For a fixed q > 1, up to a change in the constants, we request that

|an| ≤ CAn([n]q!)s, n ∈ N.
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19The q-analogues to the initial problems

Fix q > 1. We consider the q-analogues

εx2dq,xy(x, ε) = c(x, ε) +A(x, ε)y + · · · .

What is the type of divergence of the unique formal power series solution of
each one of them?
In the variable x (x1) we have a similar behavior as in the differential case:

|an,m| ≤ CAn+m[n]q!.
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20The type of series involved

Writing ŷ =
∑∞
m=0 um(x)εm, if we start with

u0(x) ∈ Ob(Dr), then um(x) ∈ Ob(Dr/qm).

In fact,

x2dq(um−1)(x) = c∗m(x) +A∗0(x)um(x) +

m−1∑
j=0

A∗m−j(x)uj(x) + · · · .
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21The q-Nagumo norms

Motivated by the nature of the problem, we consider the following variation:
for q > 1, n ∈ N, and f ∈ O(Dr/qn), let

‖f‖n := sup
|x|<r/qn

|f(x)|(r − qn|x|)n.

In this case,

I. ‖f + g‖n ≤ ‖f‖n + ‖g‖n and ‖fg‖n+m ≤ ‖f‖n‖g‖m.

II. ‖dq(f)‖n+1 ≤ eqn(n+ 1)‖f‖n.

III. ‖σq(f)‖n+1 ≤ r‖f‖n.
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22

For the equation εx2dq,xy(x, ε) = c(x, ε) +A(x, ε)y + · · · , we find using these
norms that

‖um‖m ≤ Rmm!qm(m−1)/2,

and taking into account the restriction on the radius, we see that

|an,m| ≤ Kn+mqnmm!qm(m−1)/2.

In conclusion, the solution exhibits a divergence of type

|an,m| ≤ Kn+mmin{[n]q!, qnmm!qm(m−1)/2}.

Note also the confluence to the usual case as q → 1+.
More generally,

|an,m| ≤ CAn+mmin{[n]!1/pq , qnm/σqm
2/(2σ2)m!1/σ}.
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23Lifting again

Consider now the q-difference equation

x1x2 (λ1x1dq,x1y + λ2x2dq,x2y) = c(x1, x2) +A(x1, x2)y + · · · .

In this case, for P = x1x2, Ŵ (x, t) =
∑∞
n=1 ynt

n, and ŷ(x) =
∑∞
n=1 ynP

n.
Therefore,

P · L(ŷ) =
∞∑
n=1

L(yn)P
n+1 + [n]q (λ1yn(qx1, x2) + λ2yn(x1, qx2))P

n+1.

The lifted equation is(
tL+ (λ1σq,x1 + λ2σq,x2)t

2dq,t
)
(w) = · · · .
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It turns out, using again the q-Nagumo norms that

|an,m| ≤ Cn+mqmin(n,m)|m−n|min{n!qn(n−1)/2,m!qm(m−1)/2}.

This is equivalent to write

ŷ =
∞∑
n=0

yn(x2)x
n
1 =

∞∑
m=0

um(x1)x
m
2

and obtain bounds of type

sup
|x2|< r

qn

|yn(x2)| ≤ Knn!qn(n−1)/2, sup
|x1|< r

qm

|um(x1)| ≤ Kmm!qm(m−1)/2.
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25An explicit example?

Consider the scalar equation

εx2dq(y) = (1 + x)y − xε.

ŷ(x, ε) =
∞∑
n=1

yn(ε)x
n =

∞∑
m=1

um(x)εm, yn(x) = ε

n−1∏
j=1

([j]qε− 1).

We find that

u1(x) =
x

1 + x
, um(x) =

x2

1 + x
dq(um−1)(x), m ≥ 2.

Therefore,

um(x) =
xm

(1 + x)m(1 + qx)m−1(1 + q2x)m−2 · · · (1 + qm−1x)
Pm(x, q),

where Pm(x, q) ∈ C[x, q].
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P5(x, q) =− q16x9 − x8
(
−6q15 − 7q14 − 3q13

)
− x7

(
−10q15 − 19q14 − 14q13 − 8q12 − 5q11 − 3q10

)
− x6

(
−5q15 − 11q14 − 4q13 + 7q12 + 12q11 + 8q10 + 6q9 + q8

)
− x5

(
−q15 − 2q14 + 8q13 + 35q12 + 64q11 + 71q10 + 61q9 + 40q8 + 19q7 + 6q6

)
− x4

(
3q13 + 22q12 + 55q11 + 84q10 + 98q9 + 93q8 + 69q7 + 37q6 + 12q5 + 3q4

)
− x3

(
4q12 + 15q11 + 30q10 + 44q9 + 54q8 + 50q7 + 34q6 + 18q5 + 8q4 + 2q3

)
− x2

(
q11 + 3q10 + 5q9 + 5q8 − 10q6 − 15q5 − 13q4 − 8q3 − 2q2

)
− x

(
−q8 − 4q7 − 11q6 − 18q5 − 21q4 − 18q3 − 10q2 − 3q

)
+ q6 + 3q5 + 5q4 + 6q3 + 5q2 + 3q + 1,

...
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Thanks for your attention.
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