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Composition operators: Cφ(f ) = f ◦ φ

Broadly studied in spaces of analytic functions on the unit disc.
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analytic functions (2011, 2012, 2017).

Kennesey-Wengenroth (2011), Przestacki (204, 2017), Golinski-Przestacki (2020):
composition operators on C∞(R).
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Let X be a Fréchet space.

An operator T on X is said to be hypercyclic if there exist a dense orbit
O(T , x) := {Tn(x) : n ∈ N}.
The operator is supercyclic if there exists x ∈ X such that the projective orbit
KO(T , x) = {λTn(x) : λ ∈ K, n ∈ N} is dense.

T : X → X is said to be power bounded if {Tn : n ∈ N} is an equicontinuous set. By Banach
Steinhaus principle, T is power bounded if and only if {Tn(x) : n ∈ N} is bounded for each
x ∈ X .

Given T ∈ L (X ), the Cesàro mean of T is defined as T[n] =
∑n

k=1 T k/n. T is said to be mean
ergodic when T[n] converges to an operator P, in the strong operator topology, i.e. if (T[n](x))
is convergent to P(x) for each x ∈ X . The operator is called uniformly mean ergodic if this
convergence happens uniformly on bounded sets.

If X is reflexive, power boundedness⇒ mean ergodicity (Lorch for Banach spaces),
(Albanese-Bonet-Ricker for Fréchet spaces).
For Fréchet-Montel spaces, mean ergodicity and uniform mean ergodicity are equivalent
concepts.
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The Schwartz space

Given f : R→ C , f ∈ S(R) if f ∈ C∞(R) and

πn(f ) := sup
x∈R

sup
1⩽j⩽n

(1 + |x |2)n |f (j)(x)| < ∞

for each n ∈ N.

S(R) is a Fréchet-Montel space when endowed with the topology generated by the
sequence of seminorms (πn)n∈N .
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The symbols for S(R)

A function φ : R→ R is a symbol of S(R) if the composition operator Cφ(f ) = f ◦ φ maps
S(R) continuously into itself.

Theorem (Galbis-Jordá)

A function φ ∈ C∞(R) is a symbol for S(R) if and only if the following conditions are satisfied:

(i) For all j ∈ N0 there exist C , p > 0 such that

|φ(j)(x)| ⩽ C(1 + |φ(x)|2)p

for every x ∈ R.

(ii) There exists k > 0 such that |φ(x)| ⩾ |x |1/k for all |x | ⩾ k .
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Composition operators on S(R) are never hyperciclic: No orbit can be dense since all the
functions in the orbit

O(Cφ, f ) = {f ◦ φn : n ∈ N}

have the range contained in the bounded set f (R).

Even more, Cφ : S(R)→ S(R) is not supercyclic.
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Power bounded composition operators on S(R)

Proposition

For a symbol φ the composition operators Cφ is power bounded if and only if the following
statements hold

(i) For all j ∈ N0 there exist C , p > 0 such that∣∣∣(φn)(j)(x)
∣∣∣ ⩽ C(1 + φn(x)2)p

for every x ∈ R and every n ∈ N.

(ii) There exists k > 0 such that |φn(x)| ⩾ |x |1/k for all |x | ⩾ k and every n ∈ N.
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Monotonic symbols, power boundedness and mean ergodicity

Theorem

Let φ be a monotonic symbol

(i) If φ is increasing then Cφ is power bounded if and only if φ(x) = x for each x ∈ R.
Moreover, if φ has some fixed point, Cφ is mean ergodic if and only if it is power bounded.

(ii) If φ is decreasing then Cφ is power bounded if and only if Cφ is mean ergodic if and only if
φ2(x) = x for each x ∈ R.
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Polynomials of degree 1

Corollary

φ(x) = ax + b has degree one then Cφ is mean ergodic if and only if φ(x) = x or
φ(x) = −x + b .

Proof.

For a > 0. If a , 1, φ has a fixed point, hence it is mean ergodic if and only if it is power
bounded which cannot be.When a = 1, that is φ(x) = x + b . If Cφ is mean ergodic, then

1
n

Cφn f → 0

for every f . Take f ∈ S(R) with f (0) = 1. Then, as φn(−nb) = 0, we must have

1 + n2b2

n
=

1 + n2b2

n
Cφn f (−nb)→n 0

which implies b = 0.
If a < 0, since φ2 has to be the identity, then φ(x) = −x + b . □
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Power boundedness of polynomials of higher degree

Theorem

Let φ be a polynomial with degree greater than one. Then, the following are equivalent:

(i) Cφ is power bounded.

(ii) Cφ is mean ergodic.

(iii) φ has no fixed points (⇒ φ has even degree).
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Sketch of the proof: (iii)⇒ (i)

After replacing φ by some of its iterates we can assume that φ has neither zeros nor fixed
points and, for every K > 0 there is mK ∈ N such that

|φm+1(t)| ⩾ K (φm(t))2
∀m ⩾ mK , ∀t ∈ R.

As φ is a polynomial which does not vanish, there is C ⩾ 1 such that |φ(j)(t)| ⩽ C |φ(t)| for
every t ∈ R and j ∈ N.
Let us write

Cn = C
∑ 1

k1! . . . kn!

where the sum is extended to all multi-indices such that

k1 + 2k2 + . . . + nkn = n.

We may find an increasing sequence (mn) of natural numbers with the property that

φm+1(t) ⩾ Cn (φm(t))2
∀m ⩾ mn, ∀t ∈ R.
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Proof continues

We claim that there is Bn > Cn such that for m ⩾ mn, and n ∈ N,∣∣∣∣∣∣ (φm)(n)(t)
n!

∣∣∣∣∣∣ ⩽ Bn
n |φm(t)|2n (1)

for every t ∈ R.

Let us check this for n = 1. We take B1 > C such that the previous inequality is satisfied for
m = m1. Now, assuming that the inequality holds for n = 1 and some m ⩾ m1 we obtain∣∣∣∣∣ (φm+1)′(t)

(φm+1(t))2

∣∣∣∣∣ =
|φ′(φm(t)) · (φm)′(t)|

|φm+1(t)|2
⩽

C |φm+1(t)|B1|φm(t)|2

|φm+1(t)|2

= CB1
|φm(t)|2

|φm+1(t)|
⩽ B1.

Consequently (1) holds for n = 1 and m ⩾ m1.
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Sprectrum of Cφ for polynomial symbols of degree 1

σ(Cφ) is the spectrum of Cφ, that is the set of all complex numbers λ such that
Cφ − λI : S(R)→ S(R) does not admit a continuous linear inverse.

Two polynomials φ, ψ are linearly equivalent if there exists ℓ(x) = xc + d (c , 0) such that
ψ = ℓ−1 ◦ φ ◦ ℓ which implies that σ(Cψ) = σ(Cφ).

Proposition

Given φ(x) = ax + b with a , 0. Then

(i) If |a | , 1, σ(Cφ) = C \ {0}.

(ii) If a = 1 and b , 0, σ(Cφ) = {λ ∈ C : |λ| = 1}.

(iii) If a = −1, then σ(Cφ) = {−1, 1}.

Proof.

If |a | , 1, φ is linearly equivalent to ψ(x) = ax and it can be proved that σ(ψ) = C \ {0}.
For a = 1, φ is linearly equivalent to ψ(x) = x + 1 and one can show that
σ(ψ) = {λ ∈ C : |λ| = 1}.
Finally, if a = −1, φ ◦ φ(x) = x, for all x. □
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The spectrum for φ(x) = x + 1

Cφ has no eigenvalues:
Cφ(f ) = λf , λ , 0, f , 0,⇒ f (x + n) = λnf (x) for all n ∈ N and x ∈ R hence |λ| < 1, but then,
f (x) = λnf (x − n) forces f ≡ 0.

Cφ − λI is surjective for |λ| , 1: It is easy to see that ∀ℓ, n

πℓ(Cφn f ) ⩽ (1 + 4n2)ℓπℓ(f )

from where the convergence of

g = −
∞∑

n=0

1
λn+1

Cφ(f )

for |λ| > 1 follows and Cφg − λg = f . For 0 < |λ| < 1 we may argue with ψ(x) = x − 1.
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Proof continues

For λ = e2πiω, ω ∈ R, if Cφ(f ) = λf + g, iterating we get

f (x + n) = λnf (x) +
n−1∑
k=0

λn−k−1g(x + k ) and therefore f (x) = λnf (x − n) +
n∑

k=1

λk−1g(x − k ),

hence

f (x) = −
1
λ

∞∑
k=0

λ−k g(x + k ) and f (x) =
1
λ

∞∑
k=1

λk g(x − k ).

Then, the Zack transform of g satisfies

Zg(x, ω) =
∑
k∈Z

λk g(x − k ) = 0∀x ∈ R.

Consequently

ĝ(ω) =
∫ 1

0
Zg(x, ω)dx = 0,

which means that the range of Cφ − λ cannot be surjective.
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Spectrum of Cφ for polynomial symbols of higher degree

Theorem

Let φ be a polynomial of degree greater than 1 and without fixed points. Then σ(Cφ) = {0}.

Corollary

Let φ be a polynomial of degree greater than 1. Cφ is mean ergodic if and only if σ(Cφ) = {0}.

Theorem

Let φ be a polynomial of degree greater than 1 and with fixed points. Then σ(Cφ) ⊃ D \ {0}.
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Spectrum of quadratic polynomials

A quadratic polinomial φ(x) = a0 + a1x + a2x2 (a2 , 0) is linearly equivalent to ψ(x) = x2 + c

where c = a0a2 + a1
2 −

a2
1
4 .

c > 1
4 implies that φ and ψ lack fixed points, therefore σ(Cφ) = {0}.

c < 1
4 implies that φ ( and ψ) has two different fixed points. In this case, one may show that

σ(Cφ) = C.

c = 1
4 is the case where φ has a single fixed point of multiplicity 2. Spectrum?
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Spectrum of Cφ for φ(x) = x2 + 1
4

Theorem

Let φ(x) = x2 + 1
4 be given. Then σ(Cφ) = D.

Proof.

Since φ has a fixed point, σ(Cφ) ⊃ D \ {0}. But 0 ∈ σ(Cφ) because the range of φ is [ 1
4 ,∞).

We have to show that Cφ − λI is a bijection for every |λ| > 1.
Injectivity:
Cφ(f ) = λf ⇒ f (φn(x)) = λnf (x). Since the left hand side is bounded this implies f (x) = 0 for
every x. □
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Proof continues

Surjectivity:
Clearly |x | ⩽ 1 + φm(x) ∀x ∈ R and ∀m ∈ N.
It can be proved that

∀r > 1∀n ∈ N∃C > 0, p ∈ N

such that
|φ(n)

m (x)| ⩽ Crm(1 + φm(x))p , ∀m ∀x.

From here, we get the convergence in S(R) of

f = −
∞∑

k=0

1
λk+1

g ◦ φk

for every g and Cφf − λf = g.
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