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Composition operators: C,(f) = fo ¢
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Let X be a Fréchet space.

An operator T on X is said to be hypercyclic if there exist a dense orbit
O(T,x) ={T"(x): neN}

The operator is supercyclic if there exists x € X such that the projective orbit
KO(T,x) ={AT"(x) : 2 €K, ne N}is dense.

T : X — X is said to be power bounded if {T" : n € N} is an equicontinuous set. By Banach
Steinhaus principle, T is power bounded if and only if {T"(x) : n € N} is bounded for each
x e X.

Given T € L(X), the Cesaro mean of T is defined as Tjyy = Yk, T*/n. T is said to be mean
ergodic when T, converges to an operator P, in the strong operator topology, i.e. if (Tj;(x))
is convergent to P(x) for each x € X. The operator is called uniformly mean ergodic if this
convergence happens uniformly on bounded sets.

If X is reflexive, power boundedness = mean ergodicity (Lorch for Banach spaces),
(Albanese-Bonet-Ricker for Fréchet spaces).

For Fréchet-Montel spaces, mean ergodicity and uniform mean ergodicity are equivalent
concepts.
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The Schwartz space

Givenf:R - C, f e S(R) if f € C*(R) and

7a(f) = sup sup (1 + [xP)"IfP(x)] < o

XeR 1<j<n

for each n € N.

S(R) is a Frechet-Montel space when endowed with the topology generated by the
sequence of seminorms () pey -



The symbols for S(R)

A function ¢ : R — R is a symbol of S(R) if the composition operator C,(f) = f o ¢ maps
S(R) continuously into itself.

Theorem (Galbis-Jorda)

A function ¢ € C*(R) is a symbol for S(R) if and only if the following conditions are satisfied:

(i) For all j € Ny there exist C, p > 0 such that
()] < C(1 +lp(x)F)

for every x € R.

(i) There exists k > 0 such that |o(x)| > |x|'/* for all |x| > k.




Composition operators on S(R) are never hyperciclic: No orbit can be dense since all the
functions in the orbit

O(Cy,f)y={fop,: neN}

have the range contained in the bounded set f(R).



Composition operators on S(R) are never hyperciclic: No orbit can be dense since all the
functions in the orbit

O(Cy,f)y={fop,: neN}

have the range contained in the bounded set f(R).

Even more, C, : S(R) — S(R) is not supercyclic.



Power bounded composition operators on S(R)

Proposition

For a symbol ¢ the composition operators C,, is power bounded if and only if the following
statements hold

(i) For all j € Ny there exist C, p > 0 such that

(@) (x)| < C(1 + gn(x)?)

for every x € R and every n € N.
(ii) There exists k > 0 such that |¢,(x)| > |x|"/* for all [x| > k and every n € N.
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statements hold

(i) For all j € Ny there exist C, p > 0 such that

(@) (x)| < C(1 + gn(x)?)

for every x € R and every n € N.
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Monotonic symbols, power boundedness and mean ergodicity

Let ¢ be a monotonic symbol
(i) If ¢ is increasing then C, is power bounded if and only if ¢(x) = x for each x € R.
Moreover, if ¢ has some fixed point, C, is mean ergodic if and only if it is power bounded.
(i) If ¢ is decreasing then C, is power bounded if and only if C, is mean ergodic if and only if
@2(x) = x for each x € R.




Polynomials of degree 1

Corollary

¢(x) = ax + b has degree one then C, is mean ergodic if and only if ¢(x) = x or
¢(x) =-x+b.
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Proof.

Fora > 0. If a # 1, ¢ has a fixed point, hence it is mean ergodic if and only if it is power
bounded which cannot be.
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Polynomials of degree 1

Corollary

¢(x) = ax + b has degree one then C, is mean ergodic if and only if ¢(x) = x or
¢(x) =-x+b.

G

Proof.

Fora > 0. If a # 1, ¢ has a fixed point, hence it is mean ergodic if and only if it is power
bounded which cannot be.When a = 1, that is ¢(x) = x + b. If C, is mean ergodic, then

1
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Polynomials of degree 1

Corollary

¢(x) = ax + b has degree one then C, is mean ergodic if and only if ¢(x) = x or
¢(x) =-x+b.

G

Proof.

Fora > 0. If a # 1, ¢ has a fixed point, hence it is mean ergodic if and only if it is power
bounded which cannot be.When a = 1, that is ¢(x) = x + b. If C, is mean ergodic, then

1
ECWHf -0

for every f. Take f € S(R) with f(0) = 1. Then, as ¢,(—nb) = 0, we must have

1+ n°b? B 1+ n°b?

n n

C

¢n

f(~nb) —, 0

which implies b = 0.
If a < 0, since ¢, has to be the identity, then ¢(x) = —x + b. O




Power boundedness of polynomials of higher degree

Let ¢ be a polynomial with degree greater than one. Then, the following are equivalent:

(i) C, is power bounded.
(i) C, is mean ergodic.

(iii) ¢ has no fixed points (= ¢ has even degree).
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Sketch of the proof: (iii)= (i)

After replacing ¢ by some of its iterates we can assume that ¢ has neither zeros nor fixed
points and, for every K > 0 there is mx € N such that

lome (D] > K (@m(1))? Ym > my, VteR.
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Sketch of the proof: (iii)= (i)

After replacing ¢ by some of its iterates we can assume that ¢ has neither zeros nor fixed
points and, for every K > 0 there is mx € N such that

lome (D] > K (@m(1))? Ym > my, VteR.

As ¢ is a polynomial which does not vanish, there is C > 1 such that |o?(t)] < Cle(t)| for
everyte RandjeN.
Let us write

’
cn=cZ kil k!

where the sum is extended to all multi-indices such that
Ky +2ko + ...+ nk, = n.
We may find an increasing sequence (m,) of natural numbers with the property that

Om(t) = Co (em(1)? Ym=m,, VteR.
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Proof continues

We claim that there is B, > C, such that for m > m,,and n e N,

(om) (1)

| < Bl gm0 (1)

for every t e R.
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Proof continues

We claim that there is B, > C, such that for m > m,,and n e N,

(om) (1)

= < Bl lpn(DF" (1)

for every t e R.
Let us check this for n = 1. We take B; > C such that the previous inequality is satisfied for
m = my. Now, assuming that the inequality holds for n = 1 and some m > m; we obtain

‘(gomn)'(t) _ 1 @m(®) - (@m) (O] _ Clemer ()1Brlgm(B)
(@me1 (1)) e (1) - lmen ()2

|‘Pm(t)|2 <

T om0

Consequently (1) holds forn=1and m > m;.
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Sprectrum of C,, for polynomial symbols of degree 1

o (C,) is the spectrum of C,, that is the set of all complex numbers A such that
C, — Al : S(R) — S(R) does not admit a continuous linear inverse.

Two polynomials ¢,y are linearly equivalent if there exists £(x) = xc + d (¢ # 0) such that
¥ =" o p o £ which implies that o(C,) = o(C,).

Proposition

Given ¢(x) = ax + b with a # 0. Then

(i) Iflal # 1, o(C,) = C\ {0}.

(i) fa=1and b #0,0(C,) ={1eC: | =1}
(iii) If @ = -1, then o(C,) = {~1,1}.

Proof

If |al # 1, ¢ is linearly equivalent to y/(x) = ax and it can be proved that o-(y) = C \ {0}.

For a =1, ¢ is linearly equivalent to ¥(x) = x + 1 and one can show that

o) ={1eC:|=1}.

Finally, if a = —1, ¢ o ¢(x) = x, for all x. O
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The spectrum for ¢(x) = x + 1

C, has no eigenvalues:

Cy(f) = Af, A #0,f #0,= f(x +n) = 2"f(x) for all n € N and x € R hence |1] < 1, but then,
f(x) = A"f(x — n) forces f = 0.

C, — Al is surjective for [1] # 1: It is easy to see that V¢, n

7e(Cpf) < (1 + 4n?) . (f)

from where the convergence of

Cy(f)

g=- Z /13+1
n=0

for || > 1 follows and C,g — Ag = f. For 0 < |4 < 1 we may argue with (x) = x — 1.
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Proof continues

For A = e, w € R, if C,(f) = Af + g, iterating we get

n—

n
fx +n) = A"f(x) + » A" "g(x + k) and therefore f(x) = A"f(x — n) + Z A g(x — k),
P

x
Il
o

hence

) oo

1
Z A g(x + k) and f(x) = 1 Z Ag(x - k).

k=0 k=1

f(x) = —

~| =

Then, the Zack transform of g satisfies

Zg(x, w) = Z Ag(x —k) =0V¥x € R.
kezZ

Consequently
|
G = [ zotxw)dx =0,
0

which means that the range of Cy — A cannot be surjective.
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Spectrum of C,, for polynomial symbols of higher degree

Let ¢ be a polynomial of degree greater than 1 and without fixed points. Then o°(C,) = {0}.
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Spectrum of C,, for polynomial symbols of higher degree

Let ¢ be a polynomial of degree greater than 1 and without fixed points. Then o°(C,) = {0}.

Corollary J

Let ¢ be a polynomial of degree greater than 1. C, is mean ergodic if and only if o-(C,) = {0}.
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Spectrum of C,, for polynomial symbols of higher degree

Let ¢ be a polynomial of degree greater than 1 and without fixed points. Then o°(C,) = {0}. J

Corollary

Let ¢ be a polynomial of degree greater than 1. C, is mean ergodic if and only if o-(C,) = {0}. J

Let ¢ be a polynomial of degree greater than 1 and with fixed points. Then o-(C,) > D\ {0}. J
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Spectrum of quadratic polynomials

A quadratic polinomial ¢(x) = ao + a;x + axx2 (ap # 0) is linearly equivalent to (x) = x> + ¢
2

a
where ¢ = apa, + 3 — .
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Spectrum of quadratic polynomials

A quadratic polinomial ¢(x) = ao + a;x + axx2 (ap # 0) is linearly equivalent to (x) = x> + ¢
2
where ¢ = apa, + 3 — 371

¢ > 1 implies that ¢ and v lack fixed points,
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Spectrum of quadratic polynomials

A quadratic polinomial ¢(x) = ao + a;x + axx2 (ap # 0) is linearly equivalent to (x) = x> + ¢
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c > 2‘1 implies that ¢ and y lack fixed points, therefore o(C,) = {0}.
1
1

¢ < , implies that ¢ ( and ¥) has two different fixed points.
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Spectrum of quadratic polynomials

A quadratic polinomial ¢(x) = ao + a;x + axx2 (ap # 0) is linearly equivalent to (x) = x> + ¢
2

a a
where ¢ = apap + 5 — .

c > 2‘1 implies that ¢ and y lack fixed points, therefore o(C,) = {0}.
c< j—t implies that ¢ ( and ¥) has two different fixed points. In this case, one may show that
o(C,) =C.

c= } is the case where ¢ has a single fixed point of multiplicity 2. Spectrum?
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Spectrum of C, for ¢(x) = x

Let ¢(x) = x2 + 1 be given. Then o(C,) = D.
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Spectrum of C, for ¢(x) = x

Theorem

Let ¢(x) = X2 + § be given. Then o°(C,) = D.

Proof.

Since ¢ has a fixed point, o(C,) > D\ {0}. ButO e o(C,) because the range of ¢ is [%, ).
We have to show that C, — Al is a bijection for every [4] > 1.
Injectivity:

C,(f) = Af = f(pn(x)) = 2"f(x). Since the left hand side is bounded this implies f(x) = 0 for
every X. m]
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Proof continues

Surjectivity:
Clearly [x| <1+ ¢mn(x) YXx € Rand Ym € N.
It can be proved that
Yr>1¥neN3dC >0,peN

such that
e (X)| < Cr™(1 + @m(X))P, YmVx.

From here, we get the convergence in S(R) of

)

1
fz—Z/lkTgogak

k=0

for every g and C,f — Af = g.
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