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A crystal is a set of atoms ordered in a periodic way.

Dan Schechtman (1980s): ordered atomic structures that are not
periodic. Nobel Prize in Chemistry (2011).
From the mathematical point of view: Yves Meyer (1970s).

Antonio Galbis



A crystal is a set of atoms ordered in a periodic way.
Dan Schechtman (1980s): ordered atomic structures that are not
periodic. Nobel Prize in Chemistry (2011).

From the mathematical point of view: Yves Meyer (1970s).

Antonio Galbis



A crystal is a set of atoms ordered in a periodic way.
Dan Schechtman (1980s): ordered atomic structures that are not
periodic. Nobel Prize in Chemistry (2011).
From the mathematical point of view: Yves Meyer (1970s).

Antonio Galbis



Fourier quasicrystals
By a Fourier quasicrystal we mean a tempered distribution µ ∈ S ′(Rd) of
the form µ =

∑
λ∈Λ aλδλ for which µ̂ =

∑
s∈S bsδs , where δξ is the mass

point at ξ, Λ and S are discrete subsets of Rd .

Λ and S are called respectively the support and the spectrum of µ.

Poisson summation formula
Given a lattice Λ = T (Zd), where T is an invertible linear map. Then

µ =
∑
λ∈Λ

δλ =⇒ µ̂ = 1
detT

∑
s∈Λ∗

δs ,

where

Λ∗ := (T ∗)−1(Zd) = {x ∈ Rd : 〈x , λ〉 ∈ Z ∀λ ∈ Λ}.
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Dirac combs have a well-defined periodic structure.
Question (Lagarias 2000): Is part of this structure in some sense also
present in Fourier quasicrystals?

Definition
A set A ⊂ Rd is said to be uniformly discrete (u.d.) if there is δ > 0 such
that |r − s| ≥ δ whenever s, r ∈ A, s 6= r .

If Λ is uniformly discrete, a necessary and sufficient condition for the
measure µ =

∑
λ∈Λ aλδλ to be a tempered distribution is that there

exists some constant N ∈ N such that

|aλ| = O(|λ|N)

as |λ| goes to infinity.
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Theorem (N. Lev, A. Olevskii, 2015))
If the support and the spectrum of a measure µ on R are uniformly
discrete then µ is a finite sum of Dirac combs, translated and modulated:

µ =
N∑
j=1

Pj(t)
∑
λ∈Λ

δλ+θj .

Λ is a lattice and Pj(t) are trigonometric polynomials.

The same result is true in Rd , under the extra assumption that µ is
a positive measure.
Previous results in this direction: Meyer (1970), A. Córdoba (1989),
Kolountzakis-Lagarias (1996).
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Kolountzakis-Lagarias (1996).

Antonio Galbis



Example (S. Yu. Favorov, 2016)
A complex measure on R2 whose support and spectrum are uniformly
discrete sets but whose support is not contained in a finite union of
translations of a single lattice.

Theorem (V.P. Palamodov, 2017)

Let 0 6= µ ∈ S ′(Rd) be a tempered distribution on Rd with support Λ
and spectrum Σ. We assume that the sets Λ - Λ and Σ - Σ are discrete
sets and one of them is uniformly discrete. Then

Λ is a finite union of translates of a single lattice L and Σ is a finite union
of translates of the dual lattice L∗.
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Lev, Olevskii (2016): there exists a Fourier quasicrystal whose
support and spectrum are discrete closed sets on the real line but
with the property that the support contains only finitely many
elements of any arithmetic progression. It follows that the support of
µ can not contain any lattice.

Explicit examples of quasicrystals that do not have a structure based
on the Poisson summation formula: P. Kurasov and P. Sarnak
(2020).
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Aim
Detect Fourier quasicrystals from the information contained in a joint
time-frequency representation.

Wigner transform: quantum mechanics (1932); signal analysis (J.
Ville 1948).

Definition
Let f , g ∈ L2(Rd) be given. The cross Wigner transform is

W (f , g)(x , ω) =
∫
Rd

f (x + t

2 )g(x − t

2 )e−2πiωtdt, x , ω ∈ Rd .

W (f ) := W (f , f ).
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Properties of the Wigner transform
Covariant property.
W (TuMηf )(x , ω) = Wf (x − u, ω − η), where

(Tuf )(t) = f (t − u), (Mηf )(t) = e2πiηt f (t).

Moyal’s formula.
For f1, f2, g1, g2 ∈ L2(Rd) we have

〈W (f1, g1),W (f2, g2)〉 = 〈f1, f2〉 · 〈g1, g2〉.

Marginal densities.
For f , f̂ ∈ L1(Rd) ∩ L2(Rd) we have∫

Rd

Wf (x , ω) dω = |f (x)|2,
∫
Rd

Wf (x , ω) dx = |f̂ (ω)|2.

W (f̂ )(x , ω) = W (f )(−ω, x).
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Extension to tempered distributions

W : S ′(Rd)× S ′(Rd)→ S ′(R2d)

For µ, ν ∈ S ′(Rd) we have W (µ, ν) := F2
(
Ts(µ⊗ ν)

)
, that is

〈W (µ, ν), φ〉 = 〈µ⊗ ν, T −1
s F−1

2 φ〉

for any φ ∈ S(R2d), where F2 denotes the partial Fourier transform with
respect to the second variable and Ts is the symmetric coordinate change
defined by

TsF (x , t) = F (x + t

2 , x −
t

2 ), x , t ∈ Rd . (1)
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Example (Boggiatto, Fernández, G., Oliaro (2022))
There is a distribution µ ∈ S ′(R) whose Wigner transform is supported
on a uniformly discrete subset of R2 even though the support of µ
coincides with R.

Ingredients:
For every A ∈ Sp(2,R) there is a unitary operator TA acting on
L2(R) such that

W
(
TAf ,TAg

)
= W (f , g) ◦ A∗ ∀f , g ∈ L2(R).

The previous relation can be extended to arbitrary tempered
distributions.

Take µ =
∑

n∈Z δn and A =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ (−π, π). Then

TAµ is a fractional Fourier transform of µ, and W (TA µ) is a
rotation of W (µ). The conclusion follows after choosing θ
appropriately.

Antonio Galbis



Example (Boggiatto, Fernández, G., Oliaro (2022))
There is a distribution µ ∈ S ′(R) whose Wigner transform is supported
on a uniformly discrete subset of R2 even though the support of µ
coincides with R.

Ingredients:
For every A ∈ Sp(2,R) there is a unitary operator TA acting on
L2(R) such that

W
(
TAf ,TAg

)
= W (f , g) ◦ A∗ ∀f , g ∈ L2(R).

The previous relation can be extended to arbitrary tempered
distributions.

Take µ =
∑

n∈Z δn and A =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ (−π, π). Then

TAµ is a fractional Fourier transform of µ, and W (TA µ) is a
rotation of W (µ). The conclusion follows after choosing θ
appropriately.

Antonio Galbis



Example (Boggiatto, Fernández, G., Oliaro (2022))
There is a distribution µ ∈ S ′(R) whose Wigner transform is supported
on a uniformly discrete subset of R2 even though the support of µ
coincides with R.

Ingredients:
For every A ∈ Sp(2,R) there is a unitary operator TA acting on
L2(R) such that

W
(
TAf ,TAg

)
= W (f , g) ◦ A∗ ∀f , g ∈ L2(R).

The previous relation can be extended to arbitrary tempered
distributions.

Take µ =
∑

n∈Z δn and A =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ (−π, π). Then

TAµ is a fractional Fourier transform of µ, and W (TA µ) is a
rotation of W (µ). The conclusion follows after choosing θ
appropriately.

Antonio Galbis



Example (Boggiatto, Fernández, G., Oliaro (2022))
There is a distribution µ ∈ S ′(R) whose Wigner transform is supported
on a uniformly discrete subset of R2 even though the support of µ
coincides with R.

Ingredients:
For every A ∈ Sp(2,R) there is a unitary operator TA acting on
L2(R) such that

W
(
TAf ,TAg

)
= W (f , g) ◦ A∗ ∀f , g ∈ L2(R).

The previous relation can be extended to arbitrary tempered
distributions.

Take µ =
∑

n∈Z δn and A =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ (−π, π). Then

TAµ is a fractional Fourier transform of µ, and W (TA µ) is a
rotation of W (µ). The conclusion follows after choosing θ
appropriately.

Antonio Galbis



Main result

Theorem (Boggiatto, Fernández, G., Oliaro (2022))

Let µ ∈ S ′(Rd) satisfy W (µ) =
∑

(r ,s)∈A×B cr ,sδ(r ,s) where A,B are
uniformly discrete sets in Rd . Then µ and µ̂ are measures. Moreover, the
support of µ is a finite union of translates of a single lattice L, while the
support of µ̂ is a finite union of translates of the dual lattice L∗.

Lemma
Under the hypotheses of the theorem it is fulfilled that supp µ ⊂ A.
Moreover, r1+r2

2 ∈ A for any r1, r2 ∈ supp µ. A similar statement holds for
µ̂ and B.
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Remark
The inclusions obtained above go into the opposite direction with respect
to the classical inclusions

Π1(supp Wµ) ⊂ H(supp µ), Π2(supp Wµ) ⊂ H(supp µ̂),

where Πj are the projections and H indicates the convex hull of a set.

Remark
An immediate consequence of the previous lemma is that the set
supp µ+supp µ

2 is u.d., as it is a subset of A. This fact will be crucial in
the proof of our theorem. Note that this is not true for arbitrary u.d.
sets. For instance A =

{
n + 1

|n| : n ∈ Z \ {0}
}

is u.d. but 0 is an
accumulation point of A+A

2 .

From the lemma: Λ := supp µ and Σ := supp µ̂ have the property that Λ
- Λ and Σ - Σ are uniformly discrete.

The statement on the supports now follows from Palamodov’s theorem.
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Sketch of the proof that µ is a measure in the
one-dimensional case

µ =
∑

r∈suppµ

N∑
j=0

ajrδ
(j)
r ,

with ajr ∈ C.

We now assume N ≥ 1 and show that aNr = 0 for all
r ∈ suppµ.

For any real-valued functions φ1, φ2 ∈ S(R) we have, for φ = φ1 ⊗ φ2,

〈W (µ), φ1 ⊗ φ2〉 = 〈µu, 〈µv , φ1

(
u + v

2

)
φ̂2 (v − u)〉〉

=
N∑

j,k=0

j∑
`=0

k∑
m=0

(−1)j+kλ`,mj,k

∑
r , s∈suppµ

aks a
j
rφ

(`+m)
1

(
r + s

2

)
φ̂2

(j+k−`−m)
(r − s).
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· · ·

Fix r0 ∈ suppµ and choose φ1 ∈ S(R) compactly supported on a small
neighbourhood of r0 and such that φ(n)

1 (r0) = 0 for n = 0, . . . , 2N − 1
whereas φ(2N)

1 (r0) 6= 0.

Then, for any compactly supported smooth function φ2 ∈ S(R) , we have

〈W (µ), φ1 ⊗ φ2〉 = 1
22N φ

(2N)
1 (r0)

∑
r , s∈D(r0)

aNr a
N
s φ̂2(r − s).

Here D(r0) := {(r , s) : r , s ∈ suppµ; r+s
2 = r0}.

Since W (µ) is a Radon measure, the right hand side of the previous
expression can be estimated by

C ||φ1||∞||φ2||∞,

where the constant C only depends on the (compact) support of φ1 ⊗ φ2.
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· · ·

Fix ψ be supported on a small ball with centered at the origin such that
ψ(n)(0) = 0 for n = 0, . . . , 2N − 1 and ψ(2N)(0) = 1, and for each t ≥ 1,
we apply the previous inequality to φ1(x) = ψ (t(x − x0)) , whose support
shrink as t increases.

So, for every t ≥ 1,

t2N

∣∣∣∣∣∣
∑

(r ,s)∈D(r0)

aNr a
N
s φ̂2(r − s)

∣∣∣∣∣∣ ≤ C ||ψ||∞||φ2||∞,

where C depends on the support of ψ ⊗ φ2. Taking limits as t goes to
infinity we conclude that ∑

(r ,s)∈D(r0)

aNr a
N
s φ̂2(r − s) = 0

for every φ2 ∈ D(R).
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· · ·

The map
φ 7→

∑
(r ,s)∈D(r0)

aNr a
N
s φ̂(r − s)

defines a tempered distribution.

Hence, by density,∑
(r ,s)∈D(r0)

aNr a
N
s φ̂2(r − s) = 0

for every φ2 ∈ S(R). After choosing φ2 with the property that its Fourier
transform is supported on a small compact neighborhood of the origin we
get aNr0

= 0.
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Matrix Wigner transform

W (µ, ν) = F2(Ts(µ⊗ ν)) where TsF (x , t) = F (x + t
2 , x −

t
2 ).

Definition (Bayer, Cordero, Gröchenig, Trapasso (2020))

Let T : R2d → R2d be a linear isomorphism. Then the Matrix-Wigner
transform of µ, ν ∈ S ′(R2d) is defined as:

WT (µ, ν) = F2(T (µ⊗ ν)).

Example

T =
(

I 0
0 −I

)
⇒WT (µ, ν)(x , ω) = µ(x)ν̂(ω) and we recover the

Rihaczek transform.
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Example

T =

 1
2 I I

− 1
2 I I

⇒WT (µ, ν) = A(µ, ν) is the Ambiguity

function given by

A(µ, ν)(x , ω) =
∫
Rd

e−2πiωtµ(t + x/2)ν(t − x/2) dt.

T =

 0 I

−I I

⇒WT (f , g) = Vg f (x , ω) is the Short time

Fourier transform defined by

Vg f (x , ω) = WT (f , g)(x , ω) =
∫
Rd

f (t)g(t − x)e−2πitω dt.
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Information on supports
If Ψ ∈ S ′(R2d) satisfies that Π1supp Ψ or Π1supp F2Ψ is a uniformly
discrete set then

Π1supp Ψ = Π1supp F2Ψ.

This is not true if we do not assume that the supports are uniformly
discrete, as shown by the distribution

Ψ =
∑
n∈Z

δ 1
n
⊗ δn.

T−1 =
(

A B
C D

)
Proposition (Boggiatto, Fernández, G., Oliaro (2022))

Π1supp WT (µ, ν) u.d.⇒
{

detA 6= 0 =⇒ supp µ is u.d,
detB 6= 0 =⇒ supp ν is u.d.

Π2supp WT (µ, ν) u.d.⇒
{

detA 6= 0 =⇒ supp ν̂ is u.d,
detB 6= 0 =⇒ supp µ̂ is u.d.
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The one-variable case

We denote
T−1 =

(
a b
c d

)
and assume that ab 6= 0. This condition is satisfied for instance for the
matrix defining the ambiguity function or the short time Fourier
transform.

Theorem
Let µ, ν ∈ S ′(R) \ {0} satisfy WT (µ, ν) =

∑
(r ,s)∈A×B cr ,sδ(r ,s) where

A,B are u.d. sets. Then µ, µ̂, ν, ν̂ are measures supported in u.d. sets.

Corollary
Let µ, ν ∈ S ′(R) \ {0} satisfy WT (µ, ν) =

∑
(r ,s)∈A×B cr ,sδ(r ,s) where

A,B are u.d. sets. Then, there are a, b > 0 such that µ is a finite linear
combination of time-frequency shifts of

∑
n∈Z δna and ν is a finite linear

combination of time-frequency shifts of
∑

n∈Z δnb.
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