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Recap: ergodic operators and convolution operators

Definition

Let T : E → E a bounded operator, E a Banach space. Put T[n] =
1

n

n−1∑
k=0

T k , we say

that T is mean ergodic (ME) if the sequence (T[n])n is convergent for the sot

topology. If (T[n])n converges in the operator norm, we say that T is uniformly mean

ergodic (UME).
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Recap: ergodic operators and convolution operators

Definition

Let G be a locally compact group and µ ∈ M(G). We define the convolution operator

λp(µ) : Lp
(
G ,mG

)
→ Lp

(
G ,mG

)
λp(µ)f (s) = (µ ∗ f )(s) :=

∫
f (t−1s)dµ(t), f ∈ Lp

(
G ,mG

)
, s ∈ G

Consider the augmentation ideal L0
1(G) =

{
f ∈ L1(G) :

∫
f (x) dmg(x) = 0

}
and the

operator λ0
1(µ) = λ1

∣∣
L0

1(G)
.

Definition

Let G be a locally compact group and µ ∈ M(G). We say that µ is:

I ergodic if sot-limn λ0
1(µ[n]) = 0.

I uniformly ergodic if ‖·‖op- limn λ0
1(µ[n]) = 0.

I completely mixing if sot-limn λ0
1(µn) = 0.

Note that the equation µ ∗ f = f has no nontrivial nonconstant solutions in L∞(G)

precisely when µ is ergodic.
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A new perspective: Fourier-Stieltjes transforms

G is a locally compact Abelian group:

I The character group: Ĝ = {χ : G → T : χ a cont. homomorphism}. Ĝ is again a locally

compact Abelian group.

I If G = T, Ĝ = {χn : T→ C, χn(t) = tn : n ∈ Z}, T̂ ∼= Z.

If G = Z,

Ĝ = {χt : Z→ C, χt(n) = tn : t ∈ T}, Ẑ ∼= T. In general, G ∼= ̂̂
G , via evaluations.

Definition

The Fourier-Stieltjes transform on Ĝ is the map FS : M(Ĝ)→ BUC(G), given by

FS(µ)(s) =

∫
Ĝ

χ(s) dµ(χ) =: µ̂(s), s ∈ G .

I The restriction of FS to L1(Ĝ) produces an operator FS
∣∣
L1(Ĝ)

: L1(Ĝ)→ c0(G), the

Fourier transform,

FS(f ) =

∫
Ĝ

χ(s)f (χ) dmĜ (χ) =: f̂ (s), s ∈ G .

I If A is a Banach algebra, σ(A) ⊂ A∗ denotes its spectrum, the set of all multiplicative

functionals on A.

I G ∼= σ(L1(Ĝ)) ⊂ σ(M(Ĝ)). If Gelf : M(Ĝ)→ C

(
σ
(

M(Ĝ)
))

is the Gelfand transform,

then for each µ ∈ M(Ĝ),

Gelf(µ)
∣∣
G

= FS(µ).
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FS(µ)(s) =

∫
Ĝ
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Ĝ = {χt : Z→ C, χt(n) = tn : t ∈ T}, Ẑ ∼= T. In general, G ∼= ̂̂
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: L1(Ĝ)→ c0(G), the

Fourier transform,

FS(f ) =

∫
Ĝ
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compact Abelian group.

I In general, G ∼= ̂̂
G , via evaluations.

Definition
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: L1(Ĝ)→ c0(G), the

Fourier transform,

FS(f ) =

∫
Ĝ
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∣∣
L1(Ĝ)
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Fourier and Fourier-Stieltjes algebras, commutative groups

Definition

If G is a locally compact Abelian group, the Fourier algebra, A(G), is defined to be

the range of FS
∣∣
L1(Ĝ)

:

A(G) =
{
f̂ : G → C : f ∈ L1(Ĝ)

}
.

Since f̂ ∗ g = f̂ · ĝ , pointwise multiplication and the norm ‖̂f‖A(G) = ‖f‖1, turn A(G)

into a Banach algebra naturally isomorphic to L1(Ĝ).

Definition

If G is a locally compact Abelian group the Fourier-Stieltjes algebra, B(G) is the

range of FS:

B(G) =
{
µ̂ : G → C : µ ∈ M(Ĝ)

}
.

Since µ̂ ∗ ν = µ̂ · ν̂, pointwise multiplication and the norm ‖µ̂‖B(G) = ‖µ‖M(G), turn

B(G) into a Banach algebra naturally isomorphic to M(Ĝ).

Jorge Galindo Ergodic multiplication operators on the Fourier algebra



Fourier and Fourier-Stieltjes algebras, commutative groups

Definition

If G is a locally compact Abelian group, the Fourier algebra, A(G), is defined to be

the range of FS
∣∣
L1(Ĝ)

:

A(G) =
{
f̂ : G → C : f ∈ L1(Ĝ)
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Intermezzo: the Fourier algebra and algebras of operators on G

The left-regular representation of a locally compact group G realizes L1(G) as an

algebra of (convolution) operators (and G as a group of unitary ones):

λ2 : L1(Ĝ)→ B(L2(Ĝ)) λ2(f )h = f ∗ h.

. . . turned by the Fourier transform into an algebra of multiplication operators:

L1(G)
λ2 //

F

��

B(L2(G))

F

��

f //

��

(h 7→ f ∗ h)

��
f̂ // (ĥ 7→ f̂ · ĥ)

A(Ĝ) ⊆ C0(Ĝ)
Mult

// B(L2(Ĝ))
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Algebras of operators. Functions as operators

λ2(L1(G)) can be seen as an algebra of multiplication operators on L2(Ĝ).

I λ2(L1(G))
‖·‖op

is isometric to the C∗-algebra C0(σ(L1(G))) = C0(Ĝ).

I λ2(L1(G))
‖·‖SOT is isometric to the von Neumann algebra L∞(Ĝ).

And we can identify A(G) and B(G) as preduals of algebras of operators.

I A(G) is isometric to the predual of λ2(L1(G))
‖·‖SOT .

I B(G) is isometric to the dual of λ2(L1(G))
‖·‖op

.

This approach doesn’t require G to be commutative! But doesn’t display A(G) and

B(G) as algebras of functions on G .
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Later: group von Neumann algebra VN(G) .

And we can identify A(G) and B(G) as preduals of algebras of operators.

I A(G) is isometric to the predual of λ2(L1(G))
‖·‖SOT .

I B(G) is isometric to the dual of λ2(L1(G))
‖·‖op

.

This approach doesn’t require G to be commutative! But doesn’t display A(G) and

B(G) as algebras of functions on G .

Jorge Galindo Ergodic multiplication operators on the Fourier algebra



Algebras of operators. Functions as operators

λ2(L1(G)) can be seen as an algebra of multiplication operators on L2(Ĝ).
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Second intermezzo: the universal representation

Definition

Let Rep(G) = {π : G → U(Hπ) : Hπ a Hilbert space, π a cyclic unitary representation }, and

H
univ

:= ⊕
π∈Rep(G)

Hπ , we define:

I πuniv : G → U
(
H

univ

)
, the universal representation of G , π = ⊕

π∈Rep(G)
π.

I The group C∗-algebra, C∗(G) is the completion of L1(G) under the seminorm

‖f ‖∗ = ‖πuniv(f )‖.

Recall that, for π ∈ Rep(G), always induces, averaging, a representation on L1(G).

I Since ‖π(f )‖ ≤ ‖f ‖∗, for each π ∈ Rep(G), there is a one-to-one correspondence between

representations of L1(G) and representations of C∗(G).

I For amenable groups (and this includes Abelian and compact ones) ‖f ‖∗ = ‖λ2(f )‖. In that

case C∗(G) = λ2(L1(G))
‖·‖op .
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What is A(G ) and B(G ) when G is non commutative?
Definition

If π ∈ Rep(G), the matrix coefficient of π determined by ξ and η is the function φπ,ξ,η : G → C

φπ,ξ,η(g) = 〈π(g)ξ, η 〉 .

When ξ = η the coefficient is said to be diagonal.

Theorem (GNS theorem)

If φ is a positive functional on a C∗-algebra C (a positive definite function on a group G), there is

representation π : C → B(Hπ) on a Hilbert space Hπ (a unitary representation π : G → U(Hπ))

and ξ, η ∈ Hπ such that

φ = φπ,ξ,η.

Representations of C∗(G) ks +3
KS

Dens.↑ Rest↓

��

Positive functionals on C∗(G)

Representations of L1(G)KS

��
Representations of G +3 Diagonal coefficients

GNS
= Positive definite functions on G
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Definition (Eymard, 1964)

I We define B(G) as the multiplication algebra of all coefficients of unitary representations of

G . B(G) equipped with the norm that makes B(G) = (C∗(G))∗.

I A(G) is the closed subalgebra of B(G) generated by coefficients of the regular representation

λ1. Actually, A(G) = {f ∗ g̃ : f , g ∈ L2(G)}.
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Some properties of A(G ) and B(G )

I B(G) is a unital Banach ∗-algebra.

I A(G) is a dense subalgebra of C0(G) and an ideal of B(G).

I The spectrum of A(G) can be identified with G . The Gelfand map is the identity.

The spectrum of B(G) is normally much larger. Not completely understood for

some groups.

I B(G)∗ is an operator algebra: W ∗(G) := B(G)∗ = C∗(G)∗∗,

I Enveloping von Neumann algebra: W ∗(G) = πuniv(L1(G))
sot

, i.e. elements of

B(G)∗ can be seen as operators on Huniv: if T = (Tπ)
π∈Rep(G)

∈W ∗(G) and

φ := φσ,ξ,η ∈ B(G),

〈T , φ 〉 = 〈Tσξ, η 〉 .
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Back to ergodicity

Definition

Let G be a locally compact group. We define:

I The augmentation ideal: A0(G) = {u ∈ A(G) : u(e) = 0}.

I The multiplication operators: if φ ∈ B(G), M(φ) : A(G)→ A(G) is defined as

M(φ)u = φ · u. M0(φ) = M(φ)
∣∣
A0(G)

.

I We say that φ ∈ B(G) is ergodic when sot-limn→∞(M0
φ)[n] = 0.

I We say that φ ∈ B(G) is uniformly ergodic when ‖·‖op- limn→∞(M0
φ)[n] = 0.

Question: under which conditions are φ and the operators M(φ)) and M0(φ) mean or

uniformly mean ergodic?
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The operators λ1(µ) and M(φ))

P1(G) := {φ ∈ B(G) : φ positive definite, φ(e) = 1}.

Definition

Let G be a locally compact group, µ ∈ M(G) and φ ∈ B(G). We define

Hµ : = 〈supp(µ)〉 smallest closed subgroup of G containing the support of µ.

Hφ : = {x ∈ G : φ(x) = 1}.

Theorem

Let G be a locally compact group and let µ ∈ M(G) be a probability measure. Then

λ1(µ) is mean ergodic ⇐⇒ Hµ is compact.

Theorem

Let G be a locally compact group and let φ ∈ P1(G). Then,

M(φ) is mean ergodic ⇐⇒ Hφ is open.

Relevant: φ[n] always converges pointwise to 1Hφ .
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Ergodicity and complete mixing of probabilities and positive definite functions

G a locally compact group. µ prob. measure, φ ∈ P1(G).

Definition

I We say that µ is adapted if Hµ = G (supp(µ) not contained in a proper closed

subgroup).

I We say that µ is strictly aperiodic if supp(µ) is not contained in a translate of a

closed normal subgroup. Or, equivalently, if |µ̂(χ)| = 1 ⇐⇒ χ = 1.

Definition

I We say that φ is adapted if Hφ = {x ∈ G : φ(e) = 1} = {e}.

I We say that φ is strictly aperiodic if Eφ = {x ∈ G : |φ(e)| = 1} = {e}.

Theorem

Let µ ∈ M(G) and φ ∈ B(G). Then:

I If µ is ergodic, then µ is adapted.
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Uniform mean ergodicity of probabilities and pos. definite functions

G a locally compact group, µ a probability measure and φ ∈ P1(G).

Theorem

If µ is uniformly ergodic, then G is compact.

Key fact: ‖λ0
1(µ)‖ ≥ 1

2
supx∈G‖µ− µ ∗ δx‖. It follows that if G is not compact, then

‖λ0
1(µ)‖ = 1 for every probability measure µ.

Theorem

Let G be amenable. If φ is uniformly ergodic, then G is discrete.

Key fact: ‖M0(φ)‖ ≥ M
2

supα‖φ− φ · fα‖, where (fα) ⊆ A(G) is a net such that

limα‖ufα − fα‖ = 0. It follows that, if G is amenable and nondiscrete, there is C > 0

such that ‖M0(φ)‖ ≥ 1/M for every φ ∈ P1(G).
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Uniform mean ergodicity of probabilities and pos. definite functions

G a locally compact group, µ a probability measure and φ ∈ P1(G).

σ
M(G)

(µ) = σ
(
λ

0
1(µ)

)
∪ {1} σ

B(G)
(φ) = σ

(
M0(φ)

)
∪ {1}

Theorem

µ is uniformly ergodic if and only if there is n0 s.t. µn0 is not singular (µ is

spread-out).

Key facts: if χ ∈ ∆(M(G)) and |Gelf(µ)(χ)| = 1, there is χ̃ ∈ ∆(M(G)) with

Gelf(µ)(χ̃) = 1. With this, 1 /∈ acc (σ(µ)) = acc (σ(λ1(µ))) =⇒ µ spread out.

Theorem

G amenable. φ is uniformly ergodic if and only if there is n0 s.t. d (φn0 ,A(G)) < 1

(φ is spread-out).

Key here: if χ ∈ ∆(B(G)) and |Gelf(φ)(χ)| = 1, there is χ̃ ∈ ∆(B(G)) with

Gelf(µ)(χ̃) = 1. The map χ̃ is simply the operator χ̃ = |χ| = (χ∗χ)1/2 when χ is

seen as an element of W ∗(G). With this, 1 /∈ acc (σ(φ)) = acc (σ(M(φ))) =⇒ µ

spread out.
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Some pending tasks

I Is it true that σ(φ) = σ(M(φ)) when G is not amenable?

I If amenability is not assumed, is it true that φ is uniformly ergodic if and only if φ

is spread-out?

I If µ is ergodic and Sµ = supp(µ), we know that µ ergodic implies that, for some

n, G =
⋃

1≤j,k,≤n

S−j
µ Sk

µ, what is the right analog for B(G)?
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