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Aim of the study

Let X be a topological Hausdorff space with infinite cardinal. Let
E ↪→ (C (X ), τp) be a separable ∞-dim l.c.s s.t {δx}x∈X ⊆ E ′ lin.ind. Let
w : X → C (a multiplier) and φ : X → X (a symbol) be continuous.

Aim

To study weak forms of supercyclicity of the weighted composition
operator Cw ,φ : E → E ,

Cw ,φ(f ) = w(f ◦ φ), f ∈ E ,

when it is well defined and continuous.

Examples of E spaces:

H(D),H(D \ {0}),H(C \ {0}), A(D), Lipα(D), 0 < α ≤ 1.

C (∂D), C (D),Cm(R)
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Linear dynamics. Basic definitions

Given an operator T on a t.v.s (F , τ):

f ∈ F is periodic if ∃n ∈ N such that T nf = f , T n := T ◦
n)
· · · ◦ T .

f ∈ F is a fixed point if Tf = f .

Dynamical definitions

T τ -hypercyclic: ∃f ∈ F (τ -hypercyclic vector) s.t.
Orb(T , f ) := {T nf : n = 0, 1, . . . } = {f ,Tf ,T 2f , . . . } is dense.

T τ -supercyclic: ∃f ∈ F (τ -supercyclic vector) s.t.
Orb(T , span{f }) = {λT nf : λ ∈ C, n = 0, 1, . . . } is dense in F .

T τ -cyclic: ∃f ∈ F (a τ -cyclic vector) s.t.
span{Orb(T , f )} = span{T nf : n = 0, 1, . . . } is dense in F .

τ = weak topology: T is weakly hypercyclic/supercyclic/cyclic.

τ = τp : T is pointwise hypercyclic/supercyclic/cyclic.

τ = strong topology: T is hypercyclic/supercyclic/cyclic.
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Linear dynamics

In a Banach space, we have :
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Dynamics of Cw,φ on Banach spaces of continuous functions

Section 1

Dynamics of Cw ,φ on Banach spaces of
continuous functions
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Dynamics of Cw,φ on Banach spaces of continuous functions

Background: Dynamics of Cw ,φ on H(D)

(Weak) Hypercyclicity and (weak) supercyclicity:

Yousefi and Rezaei (2007), Kamali, Hedayatian and Khani Robati (2010).
Bès (2014) improved their results:

Theorem (Bès, 2014)

Let φ be a holomorphic self map of a simply connected plane domain Ω
and let w ∈ H(Ω). The following are equivalent:

a) The operator Cw ,φ is weakly supercyclic on H(Ω).

b) w is zero-free and φ is univalent and without fixed points.

c) The operator Cw ,φ is mixing on H(Ω) (⇒ Cw ,φ hypercyclic)

a) ⇒ b) is satisfied even for Ω an arbitrary planar domain.
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Dynamics of Cw,φ on Banach spaces of continuous functions

Background: Dynamics of Cw ,φ on Y ⊆ H(D)

Let Y ⊆ H(D) be a Banach space s.t. every f ∈ Y has a continuous
extension to D and δz is bounded ∀z ∈ ∂D.
Ex: Y = A(D),Y = Lipα(D), 0 < α ≤ 1.

Moradi, Khani Robati, Hedayatian (2017)*

Let φ,w ∈ Y , φ(D) ⊆ D, and let a ∈ D be a fixed point of φ s.t.
w(a) ̸= 0. If Cw ,φ is weakly supercyclic on Y , then{∏n

m=0 w(φm(z))

wn(a)
, n ∈ N

}
is unbounded ∀z ∈ D \ {a}.

* They prove the result for a class of weighted composition operators.

Moradi, Khani Robati, Hedayatian (2017)

Given φ ∈ Y , Cφ is never weakly supercyclic on Y .
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Dynamics of Cw,φ on Banach spaces of continuous functions

Supercyclicity of Cw ,φ on spaces of continuous functions

Proposition (Beltrán-Menéu, J., Murillo-Arcila)

If Cw ,φ : E → E , E ↪→ (C (X ), τp), is τp-supercyclic, then:

i) w is zero-free

ii) φ is univalent

iii) ∀τp-supercyclic function f and ∀z1 ̸= z2 ∈ X , such that {δz1 , δz2} is
linearly independent{∏n−1

m=0 w(φm(z1))f (φn(z1))∏n−1
m=0 w(φm(z2))f (φn(z2))

, n ∈ N : f (φn(z2)) ̸= 0

}
= C

If in addition, φn(z1) → a and φn(z2) → b, a, b ∈ X fixed points,
then: {∏n

m=0 w(φm(z1))∏n
m=0 w(φm(z2))

, n ∈ N
}

= C.
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Dynamics of Cw,φ on Banach spaces of continuous functions

Proof:

Let z1, z2 ∈ X , {δz1 , δz2} is linearly independent. The mapping
F : E → C2, F (g) = (g(z1), g(z2)) is τp-continuous and surjective.
Thus, if f ∈ E is a τp-supercyclic vector, as

C n
w ,φf =

(∏n−1
m=0 w ◦ φm

)
f ◦ φn, we get

{(
λ

n−1∏
m=0

w(φm(z1))f (φ
n(z1)), λ

n−1∏
m=0

w(φm(z2))f (φ
n(z2))

)
: λ ∈ C, n ∈ N

}

is dense in C2. Given c ∈ C\{0}, ∃(nk)k , s.t. λnk ̸= 0, f (φnk (zi )) ̸= 0
for i = 1, 2, and(

λnk

nk−1∏
m=0

w(φm(z1))f (φ
nk (z1)), λnk

nk−1∏
m=0

w(φm(z2))f (φ
nk (z2))

)
→ (c, 1) .

As a consequence,

lim
k

∏nk−1
m=0 w(φm(z1))f (φ

nk (z1))∏nk−1
m=0 w(φm(z2))f (φnk (z2))

= c

Enrique Jordá On supercyclic composition operators 9/27



Dynamics of Cw,φ on Banach spaces of continuous functions

Supercyclicity of Cw ,φ on spaces of continuous functions

Theorem (Beltrán-Menéu, J., Murillo-Arcila)

Let X be compact and let E ↪→ (C (X ), ∥ ∥∞) be Banach and containing
a nowhere vanishing function. Then, Cw ,φ : E → E is never weakly
supercyclic.

Corollary

Cw ,φ is not weakly supercyclic on A(D), neither on Lipα(D), 0 < α ≤ 1.
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Dynamics of Cw,φ on Banach spaces of continuous functions

Proof:

Cw ,φ : E → E is weakly supercyclic ⇒ the set of weakly supercyclic
vectors is norm dense (Sanders, 2004), and thus, ∥ ∥∞-dense ⇒

∃ f weakly supercyclic and ϵ > 0 s.t. |f (z)| ≥ ϵ ∀z ∈ X (∃ nowhere
vanishing functions).

Mw : E → E is not weakly supercyclic. So, we can assume ∃z0 ∈ X
s.t. z1 = φ(z0) ̸= z0. Therefore, ∃C > 0 such that∣∣∣∣∣

∏n−1
m=0 w(φm(z1))f (φ

n(z1))∏n−1
m=0 w(φm(z0))f (φn(z0))

∣∣∣∣∣ =
∣∣∣∣w(φn(z0))f (φ

n+1(z0))

w(z0)f (φn(z0))

∣∣∣∣ ≤ C

∀n ∈ N, a contradiction.
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Dynamics of Cw,φ on Banach spaces of continuous functions

Supercyclicity of Cφ on spaces of one variable real functions

Theorem ♣ (Beltrán-Menéu, J., Murillo-Arcila)

Let E ↪→ (C (X ), τp), asume {δx : x ∈ X} ⊆ E ′ to be linearly
independent. Any of the following conditions implies Cw ,φ : E → E , is
not τp-supercyclic:

i) φ has two fixed points {z1, z2}.
ii) ∃φn(z1) → z0, z0, z1 ∈ X , different.

iii) φ has a periodic (not fixed) point z1.

iv) X is compact, φ has a fixed point z1 such that |w(z)| ≤ |w(z1)|
∀z ∈ X .

v) φ has a fixed point z0 s.t. z0 is an accumulation point of X , φ has
stable orbits around z0.

φ : X → X has stable orbits around a fixed point z0 if ∃ a fundamental family
(Vj)j ⊆ X of connected compact neighbourhoods of z0 s.t. φ(Vj) ⊆ Vj ∀j ∈ N.
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Theorem ♣ (Beltrán-Menéu, J., Murillo-Arcila)

Let E ↪→ (C (X ), τp), asume {δx : x ∈ X} ⊆ E ′ to be linearly
independent. Any of the following conditions implies Cw ,φ : E → E , is
not τp-supercyclic:

i) φ has two fixed points {z1, z2}.

ii) ∃φn(z1) → z0, z0, z1 ∈ X , different.

iii) φ has a periodic (not fixed) point z1.

iv) X is compact, φ has a fixed point z1 such that |w(z)| ≤ |w(z1)|
∀z ∈ X .

v) φ has a fixed point z0 s.t. z0 is an accumulation point of X , φ has
stable orbits around z0.

φ : X → X has stable orbits around a fixed point z0 if ∃ a fundamental family
(Vj)j ⊆ X of connected compact neighbourhoods of z0 s.t. φ(Vj) ⊆ Vj ∀j ∈ N.
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Theorem ♣ (Beltrán-Menéu, J., Murillo-Arcila)

Let E ↪→ (C (X ), τp), asume {δx : x ∈ X} ⊆ E ′ to be linearly
independent. Any of the following conditions implies Cw ,φ : E → E , is
not τp-supercyclic:

i) φ has two fixed points {z1, z2}.
ii) ∃φn(z1) → z0, z0, z1 ∈ X , different.

iii) φ has a periodic (not fixed) point z1.

iv) X is compact, φ has a fixed point z1 such that |w(z)| ≤ |w(z1)|
∀z ∈ X .

v) φ has a fixed point z0 s.t. z0 is an accumulation point of X , φ has
stable orbits around z0.

φ : X → X has stable orbits around a fixed point z0 if ∃ a fundamental family
(Vj)j ⊆ X of connected compact neighbourhoods of z0 s.t. φ(Vj) ⊆ Vj ∀j ∈ N.
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Dynamics of Cw,φ on Banach spaces of continuous functions

Supercyclicity of Cw ,φ on spaces of continuous functions

Denjoy-Wolff theorem

If φ : D → D holomorphic is not the identity and not an automorphism
with exactly one fixed point, then there is a unique (fixed) point z0 ∈ D
such that (φn)n converges to z0 uniformly on the compact subsets of D.

Corollary

If φ : D → D is holomorphic and has a fixed point, then Cw ,φ is not
pointwise supercyclic on (C (D), τp), neither on E = H(D).

Corollary

If X = D and φ ∈ A(D), Cw ,φ : E → E is never τp-supercyclic. Thus:

Cw ,φ is never τp-supercyclic on A(D).
Cw ,φ is never τp-supercyclic on Lipα(D), 0 < α ≤ 1.
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Weak supercyclicity of composition operators on Fréchet spaces

Section 2

Weak supercyclicity of composition operators on
Fréchet spaces
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Weak supercyclicity of composition operators on Fréchet spaces

Background:

Ansari and Bourdon (1997): If X is Banach and T : X → X is
power bounded and supercyclic, then (T n(x))n converges to 0
∀x ∈ X ⇒ Isometries on Banach spaces are never supercyclic.

Sanders (2005): Surjective isometries can be weakly supercyclic.
B : c0(Z) → c0(Z), Bej = ej−1, is a weakly supercyclic isometry.

Enrique Jordá On supercyclic composition operators 15/27



Weak supercyclicity of composition operators on Fréchet spaces

Weak supercyclicity on locally convex spaces

Theorem (Beltrán-Menéu, J., Murillo-Arcila)

Let E be a locally convex space and T : E → E a weakly supercyclic
operator satisfying q ◦ T ≤ q for a continuous norm q of E . Then,
σp(T ) ∩ ∂D = ∅ and σp(T

′) ∩ ∂D = ∅. In particular, neither T nor T ′

have non zero fixed points.

As T is weakly supercyclic ⇔ αT is so:

Corollary

Let X be a Banach space. If T : X → X is a weakly supercyclic operator,
then σp(T ) ⊆ B(0, ∥T∥) and σp(T

∗) ⊆ B(0, ∥T∥).

σp(T
∗) has at most 1 point (Peris (2001): l.c.s; Herrero (1991): on Hilbert).
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Weak supercyclicity of composition operators on Fréchet spaces

Proof:

Enough to show 1 /∈ σp(T ) and 1 /∈ σp(T
′) (T is weakly supercyclic

⇔ αT is for α ̸= 0).

1 /∈ σp(T
′) : Let U = {e ∈ E : q(e) ≤ 1} and K := (U◦, ω∗),

U◦ = {u ∈ E ′ : |u(e)| ≤ q(e) for all e ∈ E}.

q ◦ T ≤ q ⇒ T ′(U◦) ⊆ U◦. There is a continuous injection
i : (E , ω) ↪→ (C (K ), τp) and T = Cφ, φ = T ′ : U◦ 7→ U◦.
By Theorem ♣ (iv), T ′ does not have any fixed point.

1 /∈ σp(T ) : Assume T (e0) = e0, e0 ∈ U, q(e0) = 1, and let

F (e0) := {u ∈ U◦ : u(e0) = 1}.

As T ′(F (e0)) ⊆ F (e0) ̸= ∅ and F (e0) is a ω∗-compact convex set,
T ′ has a fixed point (Schauder-Tychonoff’s fixed point theorem).
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Weak supercyclicity of composition operators on Fréchet spaces

Background: Weak supercyclicity of Cφ on H(Ω)

Let Ω ⊆ C be a general planar domain.

Bernal-Gonzalez, Montes-Rodŕıguez (1995): every simply
connected domain admits an automorphism φ s.t. Cφ is hypercyclic.

Grosse-Erdmann and Mortini (2009): if Ω ⊆ C is a non simply

connected domain s.t. Ĉ \Ω has finitely many bounded components,
H(Ω) does not support any hypercyclic Cφ (example: C \ {0}).

Bès’ problems (2014):

1 For which domains Ω does H(Ω) support a hypercyclic Cw ,φ?

2 On H(Ω), Ω a planar domain not simply connected,

Cw ,φ weakly supercyclic ⇔ Cw ,φ mixing?
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Weak supercyclicity of composition operators on Fréchet spaces

Weak supercyclicity on H(Ω)

φ is strongly runaway if ∀K ⊆ Ω compact ∃n0 : φn(K ) ∩ K = ∅ ∀n ≥ n0.

Proposition (Beltrán-Menéu, J., Murillo-Arcila)

Let Ω ⊆ C, Ω ̸= C′, be a domain and let φ : Ω → Ω be holomorphic.
Cφ weakly supercyclic on H(Ω) ⇒ φ injective and strongly runaway.

Proof: Cases for φ on a hyperbolic plane domain (a domain ̸= C,C′):
(1) φ strongly runaway (2) φ has a fixed point (3) φn0 = φ
(4) ∃K with an acc. point s.t. φ(K ) ⊆ K ⇒ ∥f ◦ φ∥K ≤ ∥f ∥K .

Theorem Beltrán-Menéu, J., Murillo-Arcila

The spaces H(D \ {0}) and H(C \ {0}) admit no weakly supercyclic
composition operators.
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Weak supercyclicity of composition operators on Fréchet spaces

Sketch of the proof:

H(D \ {0}) : φ : D \ {0} → D \ {0} ⇒ φ̂ : D → D holomorphic.

If φ̂(0) ̸= 0, then f ◦ φ admits a holomorphic extension to {0}
∀f ∈ H(D \ {0}). H(D) is closed in H(D \ {0}).

Assume φ̂(0) = 0 and Cφ weakly supercyclic.

φ is strongly runaway and injective.
∃U ⊆ D, 0 ∈ U, r > 0 s.t. rU ⊆ U and φ̂|D(a,r) ∼ ga,
ga(z) = az , z ∈ D, a ∈ C, 0 < |a| < 1 (Koenigs).
Cga is not weakly supercyclic on H(U \ {0}) :
- Assume ∃ni ≥ 1 such that limi λi (f ◦ (ga)ni ) = 1.
- Use the projections P0 and P−1 on the Laurent development
to get a contradiction.
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Weak supercyclicity of composition operators on Fréchet spaces

Sketch of the proof:

Cφ : H(C \ {0}) → H(C \ {0}):
Cφ weakly supercyclic ⇒ φ : C \ {0} → C \ {0} injective.

φ has the form φ(z) = az or φ(z) = a
z , with a ∈ C \ {0}.

φ(z) = a
z ⇒ C 2

φ = Id .
φ(z) = az :

If |a| ≤ 1 : as in D \ {0}.
If |a| > 1 : as in D \ {0}, but using projection P1.
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Cφ : Cm(R) ↪→ Cm(R), m ∈ N ∪ {∞}

Section 3

Cφ : Cm(R) ↪→ Cm(R), m ∈ N ∪ {∞}
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Cφ : Cm(R) ↪→ Cm(R), m ∈ N ∪ {∞}

Supercyclicity and eigenvealues.

Theorem (Bayart-Matheron)

Let X be a separable lcHs and let T ∈ L (X ) be supercyclic. Then either
σp(T

′) = ∅ or σp(T
′) = {λ}, for some λ ̸= 0. In the latter case,

Ker(T ′ − λ) has dimension 1 and Ker(T ′ − λ)n = Ker(T ′ − λ) for all
n ∈ N0. Moreover, there exists a (closed) T -invariant hyperplane X0 ⊂ X
such that T0 := λ−1T|X0

is hypercyclic on X0.
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Cφ : Cm(R) ↪→ Cm(R), m ∈ N ∪ {∞}

Proposition (Albanese, J., Mele)

Cφ : Cm(R) → Cm(R) weakly supercyclic implies φ′(x) ̸= 0 for all x ∈ R
and φ has no fixed points.

If φ′(a) = 0 then Cφ(C
m(R)) ⊆ Kerδ1a . If φ(a) = a, δ1a and δa are two

eigenvectors associated to φ′(a) and a, and Cφ is not weakly supercyclic
by Bayart-Matheron criterion.
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Cφ : Cm(R) ↪→ Cm(R), m ∈ N ∪ {∞}

Theorem (Albanese, J., Mele)

Cφ : Cm(R) → Cm(R) is weakly supercyclic if and only if it is mixing.

Proof

φ(x)− x has constant sign

φ cannot have any convergence sequence (φn(z)), then φ is strongly
runaway

Kalmes characterization of mixing (weighted) composition operators
on Cm(Rd).
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Cφ : Cm(R) ↪→ Cm(R), m ∈ N ∪ {∞}

Theorem (Albanese, J., Mele)

Cφ : C (R) → C (R) is supercyclic if and only if it is mixing.

Proof

φ has to be injective and at most one fixed point

If φ have a fixed point, then φ or φ−1 have a convergent sequence
of iterates

Cφ is supercyclic if and only if Cφ−1 is.

Kalmes characterization of mixing (weighted) composition operators
on C (Rd).
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