On supercyclic composition operators

WFCA 2022

Enrique Jordá

Joint work with M.J. Beltrán Menéu and M. Murillo-Arcila and with A.A. Albanese and C. Mele

< ロ > < 同 > < 回 > < 回 >

Aim of the study

Let X be a topological Hausdorff space with infinite cardinal. Let $E \hookrightarrow (C(X), \tau_p)$ be a separable ∞ -dim l.c.s s.t $\{\delta_x\}_{x \in X} \subseteq E'$ lin.ind. Let $w : X \to \mathbb{C}$ (a **multiplier**) and $\varphi : X \to X$ (a **symbol**) be continuous.

Aim

To study weak forms of supercyclicity of the weighted composition operator $C_{w,\varphi}: E \to E$,

$$\mathcal{C}_{\mathsf{w},arphi}(f)=\mathsf{w}(f\circarphi),\,\,f\in E,$$

when it is well defined and continuous.

Examples of E spaces:

- $H(\mathbb{D}), H(\mathbb{D} \setminus \{0\}), H(\mathbb{C} \setminus \{0\}), A(\mathbb{D}), Lip_{\alpha}(\mathbb{D}), 0 < \alpha \leq 1.$
- $C(\partial \mathbb{D}), C(\overline{\mathbb{D}}), C^m(\mathbb{R})$

イロト 不得 トイヨト イヨト 二日

Linear dynamics. Basic definitions

Given an operator T on a t.v.s (F, τ) : $f \in F$ is **periodic** if $\exists n \in \mathbb{N}$ such that $T^n f = f$, $T^n := T \circ \stackrel{n}{\cdots} \circ T$. $f \in F$ is a **fixed point** if Tf = f.

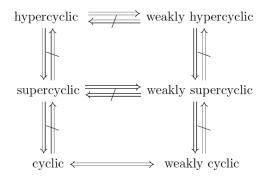
Dynamical definitions

- $T \tau$ -hypercyclic: $\exists f \in F (\tau$ -hypercyclic vector) s.t. Orb $(T, f) := \{T^n f : n = 0, 1, ...\} = \{f, Tf, T^2 f, ...\}$ is dense.
- $T \tau$ -supercyclic: $\exists f \in F (\tau$ -supercyclic vector) s.t. $Orb(T, span\{f\}) = \{\lambda T^n f : \lambda \in \mathbb{C}, n = 0, 1, ...\}$ is dense in F.
- T τ-cyclic: ∃f ∈ F (a τ-cyclic vector) s.t. span{Orb(T, f)} = span{Tⁿf : n = 0, 1,...} is dense in F.
 - $\tau =$ weak topology: T is weakly hypercyclic/supercyclic/cyclic.
 - $\tau = \tau_p$: *T* is pointwise hypercyclic/supercyclic/cyclic.
 - $\tau = {\rm strong \ topology:} \ T$ is hypercyclic/supercyclic/cyclic.

イロン イボン イヨン トヨ

Linear dynamics

In a Banach space, we have :



<ロ> <回> <回> <回> < 回> < 回> < 回> < 回</p>

Section 1

Dynamics of $C_{w,\varphi}$ on Banach spaces of continuous functions

イロン イヨン イヨン イヨン

Background: Dynamics of $C_{w,\varphi}$ on $H(\mathbb{D})$

(Weak) Hypercyclicity and (weak) supercyclicity:

Yousefi and Rezaei (2007), Kamali, Hedayatian and Khani Robati (2010). Bès (2014) improved their results:

Theorem (Bès, 2014)

Let φ be a holomorphic self map of a simply connected plane domain Ω and let $w \in H(\Omega)$. The following are equivalent:

- a) The operator $C_{w,\varphi}$ is weakly supercyclic on $H(\Omega)$.
- b) w is zero-free and φ is univalent and without fixed points.
- c) The operator $C_{w,\varphi}$ is mixing on $H(\Omega)$ ($\Rightarrow C_{w,\varphi}$ hypercyclic)

a) \Rightarrow b) is satisfied even for Ω an arbitrary planar domain.

イロト 不得 トイヨト イヨト 二日

Background: Dynamics of $C_{w,\varphi}$ on $Y \subseteq H(\mathbb{D})$

Let $Y \subseteq H(\mathbb{D})$ be a Banach space s.t. every $f \in Y$ has a continuous extension to $\overline{\mathbb{D}}$ and δ_z is bounded $\forall z \in \partial \mathbb{D}$. *Ex:* $Y = A(\mathbb{D}), Y = Lip_{\alpha}(\mathbb{D}), 0 < \alpha \leq 1$.

Moradi, Khani Robati, Hedayatian (2017)*

Let $\varphi, w \in Y, \varphi(\mathbb{D}) \subseteq \mathbb{D}$, and let $a \in \overline{\mathbb{D}}$ be a fixed point of φ s.t. $w(a) \neq 0$. If $C_{w,\varphi}$ is weakly supercyclic on Y, then

$$\left\{\frac{\prod_{m=0}^{n}w(\varphi^{m}(z))}{w^{n}(a)}, \ n \in \mathbb{N}\right\} \text{ is unbounded } \forall z \in \overline{\mathbb{D}} \setminus \{a\}.$$

* They prove the result for a class of weighted composition operators.

Moradi, Khani Robati, Hedayatian (2017)

Given $\varphi \in Y$, C_{φ} is never weakly supercyclic on Y.

イロト 不得 トイヨト イヨト 二日

Supercyclicity of $C_{w,\varphi}$ on spaces of continuous functions

Proposition (Beltrán-Menéu, J., Murillo-Arcila)

If
$$C_{w,\varphi}: E \to E, E \hookrightarrow (C(X), \tau_p)$$
, is τ_p -supercyclic, then:

- i) w is zero-free
- ii) φ is univalent
- iii) $\forall \tau_p$ -supercyclic function f and $\forall z_1 \neq z_2 \in X$, such that $\{\delta_{z_1}, \delta_{z_2}\}$ is linearly independent

$$\left\{\frac{\prod_{m=0}^{n-1}w(\varphi^m(z_1))f(\varphi^n(z_1))}{\prod_{m=0}^{n-1}w(\varphi^m(z_2))f(\varphi^n(z_2))}, \ n \in \mathbb{N} : f(\varphi^n(z_2)) \neq 0\right\} = \mathbb{C}$$

If in addition, $\varphi^n(z_1) \to a$ and $\varphi^n(z_2) \to b$, $a, b \in X$ fixed points, then:

$$\left\{\frac{\prod_{m=0}^{n} w(\varphi^m(z_1))}{\prod_{m=0}^{n} w(\varphi^m(z_2))}, \ n \in \mathbb{N}\right\} = \mathbb{C}.$$

イロト イポト イヨト イヨト

Let $z_1, z_2 \in X$, $\{\delta_{z_1}, \delta_{z_2}\}$ is linearly independent. The mapping $F : E \to \mathbb{C}^2$, $F(g) = (g(z_1), g(z_2))$ is τ_p -continuous and surjective. Thus, if $f \in E$ is a τ_p -supercyclic vector, as $C_{w,\varphi}^n f = \left(\prod_{m=0}^{n-1} w \circ \varphi^m\right) f \circ \varphi^n$, we get

$$\left\{\left(\lambda\prod_{m=0}^{n-1}w(\varphi^m(z_1))f(\varphi^n(z_1)),\lambda\prod_{m=0}^{n-1}w(\varphi^m(z_2))f(\varphi^n(z_2))\right):\lambda\in\mathbb{C},n\in\mathbb{N}\right\}$$

is dense in \mathbb{C}^2 . Given $c \in \mathbb{C} \setminus \{0\}$, $\exists (n_k)_k$, s.t. $\lambda_{n_k} \neq 0$, $f(\varphi^{n_k}(z_i)) \neq 0$ for i = 1, 2, and

$$\left(\lambda_{n_k}\prod_{m=0}^{n_k-1}w(\varphi^m(z_1))f(\varphi^{n_k}(z_1)),\lambda_{n_k}\prod_{m=0}^{n_k-1}w(\varphi^m(z_2))f(\varphi^{n_k}(z_2))\right)\to(c,1).$$

As a consequence,

$$\lim_{k} \frac{\prod_{m=0}^{n_{k}-1} w(\varphi^{m}(z_{1})) f(\varphi^{n_{k}}(z_{1}))}{\prod_{m=0}^{n_{k}-1} w(\varphi^{m}(z_{2})) f(\varphi^{n_{k}}(z_{2}))} = c$$

Supercyclicity of $C_{w,\varphi}$ on spaces of continuous functions

Theorem (Beltrán-Menéu, J., Murillo-Arcila)

Let X be compact and let $E \hookrightarrow (C(X), || ||_{\infty})$ be Banach and containing a nowhere vanishing function. Then, $C_{w,\varphi} : E \to E$ is never weakly supercyclic.

Corollary

 $C_{w,\varphi}$ is not weakly supercyclic on $A(\mathbb{D})$, neither on $Lip_{\alpha}(\mathbb{D}), 0 < \alpha \leq 1$.

ヘロト ヘワト ヘビト ヘビト

• $C_{w,\varphi}: E \to E$ is weakly supercyclic \Rightarrow the set of weakly supercyclic vectors is norm dense (Sanders, 2004), and thus, $\| \|_{\infty}$ -dense \Rightarrow

イロト 不得 トイヨト イヨト 二日

- $C_{w,\varphi}: E \to E$ is weakly supercyclic \Rightarrow the set of weakly supercyclic vectors is norm dense (Sanders, 2004), and thus, $\|\|_{\infty}$ -dense \Rightarrow
- $\exists f$ weakly supercyclic and $\epsilon > 0$ s.t. $|f(z)| \ge \epsilon \ \forall z \in X$ (\exists nowhere vanishing functions).

イロト 不得 トイヨト イヨト 二日

- $C_{w,\varphi}: E \to E$ is weakly supercyclic \Rightarrow the set of weakly supercyclic vectors is norm dense (Sanders, 2004), and thus, $\|\|_{\infty}$ -dense \Rightarrow
- $\exists f$ weakly supercyclic and $\epsilon > 0$ s.t. $|f(z)| \ge \epsilon \ \forall z \in X$ (\exists nowhere vanishing functions).
- $M_w : E \to E$ is not weakly supercyclic. So, we can assume $\exists z_0 \in X$ s.t. $z_1 = \varphi(z_0) \neq z_0$. Therefore, $\exists C > 0$ such that

$$\left|\frac{\prod_{m=0}^{n-1} w(\varphi^m(z_1)) f(\varphi^n(z_1))}{\prod_{m=0}^{n-1} w(\varphi^m(z_0)) f(\varphi^n(z_0))}\right| = \left|\frac{w(\varphi^n(z_0)) f(\varphi^{n+1}(z_0))}{w(z_0) f(\varphi^n(z_0))}\right| \le C$$

 $\forall n \in \mathbb{N}, a \text{ contradiction.}$

◆□ > ◆□ > ◆三 > ◆三 > ・□ > ・○ へ ○

Theorem 🐥 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

イロト 不得 トイヨト イヨト

Theorem 🐥 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

i) φ has two fixed points $\{z_1, z_2\}$.

イロト 不得 とくきとくきとう

Theorem 🌲 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

- i) φ has two fixed points $\{z_1, z_2\}$.
- ii) $\exists \varphi^n(z_1) \rightarrow z_0, z_0, z_1 \in X$, different.

(日)

Theorem 🌲 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

- i) φ has two fixed points $\{z_1, z_2\}$.
- ii) $\exists \varphi^n(z_1) \rightarrow z_0, z_0, z_1 \in X$, different.
- iii) φ has a periodic (not fixed) point z_1 .

イロト イヨト イヨト --

Theorem 🌲 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

- i) φ has two fixed points $\{z_1, z_2\}$.
- ii) $\exists \varphi^n(z_1) \rightarrow z_0, z_0, z_1 \in X$, different.
- iii) φ has a periodic (not fixed) point z_1 .
- iv) X is compact, φ has a fixed point z_1 such that $|w(z)| \le |w(z_1)|$ $\forall z \in X$.

イロト 不得 トイヨト イヨト 二日

Theorem 🌲 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

- i) φ has two fixed points $\{z_1, z_2\}$.
- ii) $\exists \varphi^n(z_1) \rightarrow z_0, z_0, z_1 \in X$, different.
- iii) φ has a periodic (not fixed) point z_1 .
- iv) X is compact, φ has a fixed point z_1 such that $|w(z)| \le |w(z_1)|$ $\forall z \in X$.
- v) φ has a fixed point z_0 s.t. z_0 is an accumulation point of X, φ has stable orbits around z_0 .

イロト 不得 トイヨト イヨト 二日

Theorem 🌲 (Beltrán-Menéu, J., Murillo-Arcila)

Let $E \hookrightarrow (C(X), \tau_p)$, asume $\{\delta_x : x \in X\} \subseteq E'$ to be linearly independent. Any of the following conditions implies $C_{w,\varphi} : E \to E$, is not τ_p -supercyclic:

- i) φ has two fixed points $\{z_1, z_2\}$.
- ii) $\exists \varphi^n(z_1) \rightarrow z_0, z_0, z_1 \in X$, different.
- iii) φ has a periodic (not fixed) point z_1 .
- iv) X is compact, φ has a fixed point z_1 such that $|w(z)| \le |w(z_1)|$ $\forall z \in X$.
- v) φ has a fixed point z_0 s.t. z_0 is an accumulation point of X, φ has stable orbits around z_0 .

 $\varphi: X \to X$ has stable orbits around a fixed point z_0 if \exists a fundamental family $(V_j)_j \subseteq X$ of connected compact neighbourhoods of z_0 s.t. $\varphi(V_j) \subseteq V_j \ \forall j \in \mathbb{N}$.

イロト 不得下 イヨト イヨト 二日

Supercyclicity of $C_{w,\varphi}$ on spaces of continuous functions

Denjoy-Wolff theorem

If $\varphi : \mathbb{D} \to \mathbb{D}$ holomorphic is not the identity and not an automorphism with exactly one fixed point, then there is a unique (fixed) point $z_0 \in \overline{\mathbb{D}}$ such that $(\varphi^n)_n$ converges to z_0 uniformly on the compact subsets of \mathbb{D} .

Corollary

If $\varphi : \mathbb{D} \to \mathbb{D}$ is holomorphic and has a fixed point, then $C_{w,\varphi}$ is not pointwise supercyclic on $(C(\mathbb{D}), \tau_p)$, neither on $E = H(\mathbb{D})$.

Corollary

If $X = \overline{\mathbb{D}}$ and $\varphi \in A(\mathbb{D}), \ C_{w,\varphi} : E \to E$ is never τ_p -supercyclic. Thus:

- $C_{w,\varphi}$ is never τ_p -supercyclic on $A(\mathbb{D})$.
- $C_{w,\varphi}$ is never τ_p -supercyclic on $Lip_{\alpha}(\mathbb{D}), 0 < \alpha \leq 1$.

イロト イポト イヨト イヨト

Section 2

Weak supercyclicity of composition operators on Fréchet spaces

Background:

- Ansari and Bourdon (1997): If X is Banach and T : X → X is power bounded and supercyclic, then (Tⁿ(x))_n converges to 0 ∀x ∈ X ⇒ Isometries on Banach spaces are never supercyclic.
- Sanders (2005): Surjective isometries can be weakly supercyclic.
 B: c₀(ℤ) → c₀(ℤ), Be_j = e_{j-1}, is a weakly supercyclic isometry.

イロン イヨン イヨン トラン 三日

Weak supercyclicity on locally convex spaces

Theorem (Beltrán-Menéu, J., Murillo-Arcila)

Let *E* be a locally convex space and $T : E \to E$ a weakly supercyclic operator satisfying $q \circ T \leq q$ for a continuous norm q of *E*. Then, $\sigma_p(T) \cap \partial \mathbb{D} = \emptyset$ and $\sigma_p(T') \cap \partial \mathbb{D} = \emptyset$. In particular, neither *T* nor *T'* have non zero fixed points.

As T is weakly supercyclic $\Leftrightarrow \alpha T$ is so:

Corollary

Let X be a Banach space. If $T : X \to X$ is a weakly supercyclic operator, then $\sigma_p(T) \subseteq B(0, ||T||)$ and $\sigma_p(T^*) \subseteq B(0, ||T||)$.

 $\sigma_{\rho}(T^*)$ has at most 1 point (Peris (2001): l.c.s; Herrero (1991): on Hilbert).

イロト 不得 トイヨト イヨト 二日

Enough to show $1 \notin \sigma_p(T)$ and $1 \notin \sigma_p(T')$ (*T* is weakly supercyclic $\Leftrightarrow \alpha T$ is for $\alpha \neq 0$).

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Enough to show $1 \notin \sigma_p(T)$ and $1 \notin \sigma_p(T')$ (*T* is weakly supercyclic $\Leftrightarrow \alpha T$ is for $\alpha \neq 0$).

• $\underline{1 \notin \sigma_p(T')}$: Let $U = \{e \in E : q(e) \le 1\}$ and $K := (U^\circ, \omega^*)$, $U^\circ = \{u \in E' : |u(e)| \le q(e) \text{ for all } e \in E\}.$ $q \circ T \le q \Rightarrow T'(U^\circ) \subseteq U^\circ.$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ヨ = ∽0.00

Enough to show $1 \notin \sigma_p(T)$ and $1 \notin \sigma_p(T')$ (*T* is weakly supercyclic $\Leftrightarrow \alpha T$ is for $\alpha \neq 0$).

• $\underline{1 \notin \sigma_p(T')}$: Let $U = \{e \in E : q(e) \le 1\}$ and $K := (U^\circ, \omega^*)$,

$$U^\circ = \{u \in E' : |u(e)| \le q(e) \text{ for all } e \in E\}.$$

 $q \circ T \leq q \Rightarrow T'(U^{\circ}) \subseteq U^{\circ}$. There is a continuous injection $i: (E, \omega) \hookrightarrow (C(K), \tau_p)$ and $T = C_{\varphi}, \varphi = T': U^{\circ} \mapsto U^{\circ}$. By Theorem \clubsuit (iv), T' does not have any fixed point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのぐ

Enough to show $1 \notin \sigma_p(T)$ and $1 \notin \sigma_p(T')$ (*T* is weakly supercyclic $\Leftrightarrow \alpha T$ is for $\alpha \neq 0$).

• $\underline{1 \notin \sigma_p(T')}$: Let $U = \{e \in E : q(e) \le 1\}$ and $K := (U^\circ, \omega^*)$,

$$U^\circ = \{u \in E' : |u(e)| \le q(e) \text{ for all } e \in E\}.$$

 $q \circ T \leq q \Rightarrow T'(U^{\circ}) \subseteq U^{\circ}$. There is a continuous injection $i: (E, \omega) \hookrightarrow (C(K), \tau_p)$ and $T = C_{\varphi}, \varphi = T': U^{\circ} \mapsto U^{\circ}$. By Theorem \clubsuit (iv), T' does not have any fixed point.

• $1 \notin \sigma_p(T)$: Assume $T(e_0) = e_0, e_0 \in U, q(e_0) = 1$, and let $F(e_0) := \{ u \in U^\circ : u(e_0) = 1 \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのぐ

Enough to show $1 \notin \sigma_p(T)$ and $1 \notin \sigma_p(T')$ (*T* is weakly supercyclic $\Leftrightarrow \alpha T$ is for $\alpha \neq 0$).

• $1 \notin \sigma_p(T')$: Let $U = \{e \in E : q(e) \le 1\}$ and $K := (U^\circ, \omega^*)$,

$$U^\circ = \{u \in E' : |u(e)| \le q(e) \text{ for all } e \in E\}.$$

 $q \circ T \leq q \Rightarrow T'(U^{\circ}) \subseteq U^{\circ}$. There is a continuous injection $i: (E, \omega) \hookrightarrow (C(K), \tau_p)$ and $T = C_{\varphi}, \varphi = T': U^{\circ} \mapsto U^{\circ}$. By Theorem \clubsuit (iv), T' does not have any fixed point.

• $1 \notin \sigma_p(\mathcal{T})$: Assume $\mathcal{T}(e_0) = e_0, e_0 \in U, q(e_0) = 1$, and let

$$F(e_0) := \{ u \in U^\circ : u(e_0) = 1 \}.$$

As $T'(F(e_0)) \subseteq F(e_0) \neq \emptyset$ and $F(e_0)$ is a ω^* -compact convex set, T' has a fixed point (Schauder-Tychonoff's fixed point theorem).

イロト 不同 トイヨト イヨト ヨー ろくで

Background: Weak supercyclicity of C_{φ} on $H(\Omega)$

Let $\Omega \subseteq \mathbb{C}$ be a general planar domain.

- Bernal-Gonzalez, Montes-Rodríguez (1995): every simply connected domain admits an automorphism φ s.t. C_{φ} is hypercyclic.
- Grosse-Erdmann and Mortini (2009): if Ω ⊆ C is a non simply connected domain s.t. C \ Ω has finitely many bounded components, H(Ω) does not support any hypercyclic C_φ (example: C \ {0}).

Bès' problems (2014):

• For which domains Ω does $H(\Omega)$ support a hypercyclic $C_{w,\varphi}$?

2 On $H(\Omega)$, Ω a planar domain not simply connected,

 $C_{w,\varphi}$ weakly supercyclic $\Leftrightarrow C_{w,\varphi}$ mixing?

イロト 不得 トイヨト イヨト 二日

Weak supercyclicity on $H(\Omega)$

 φ is strongly runaway if $\forall K \subseteq \Omega$ compact $\exists n_0 : \varphi^n(K) \cap K = \emptyset \ \forall n \ge n_0$.

Proposition (Beltrán-Menéu, J., Murillo-Arcila)

Let $\Omega \subseteq \mathbb{C}$, $\Omega \neq \mathbb{C}'$, be a domain and let $\varphi : \Omega \to \Omega$ be holomorphic. C_{φ} weakly supercyclic on $H(\Omega) \Rightarrow \varphi$ injective and strongly runaway.

Proof: Cases for φ on a hyperbolic plane domain (a domain $\neq \mathbb{C}, \mathbb{C}'$): (1) φ strongly runaway (2) φ has a fixed point (3) $\varphi^{n_0} = \varphi$ (4) $\exists K$ with an acc. point s.t. $\varphi(K) \subseteq K \Rightarrow \|f \circ \varphi\|_K \leq \|f\|_K$.

Theorem Beltrán-Menéu, J., Murillo-Arcila

The spaces $H(\mathbb{D} \setminus \{0\})$ and $H(\mathbb{C} \setminus \{0\})$ admit no weakly supercyclic composition operators.

ヘロト ヘワト ヘビト ヘビト

Sketch of the proof:

$\underline{H(\mathbb{D}\setminus\{0\}):}\varphi:\mathbb{D}\setminus\{0\}\to\mathbb{D}\setminus\{0\}\Rightarrow\hat{\varphi}:\mathbb{D}\to\mathbb{D}\text{ holomorphic.}$

- If $\hat{\varphi}(0) \neq 0$, then $f \circ \varphi$ admits a holomorphic extension to $\{0\}$ $\forall f \in H(\mathbb{D} \setminus \{0\})$. $H(\mathbb{D})$ is closed in $H(\mathbb{D} \setminus \{0\})$.
- Assume $\widehat{\varphi}(0) = 0$ and C_{φ} weakly supercyclic.
 - φ is strongly runaway and injective.
 - $\exists U \subseteq \mathbb{D}, 0 \in U, r > 0$ s.t. $rU \subseteq U$ and $\widehat{\varphi}|_{D(a,r)} \sim g_a$, $g_a(z) = az, z \in \mathbb{D}, a \in \mathbb{C}, 0 < |a| < 1$ (Koenigs).
 - C_{g_a} is not weakly supercyclic on $H(U \setminus \{0\})$:
 - Assume $\exists n_i \geq 1$ such that $\lim_i \lambda_i (f \circ (g_a)^{n_i}) = 1$.

- Use the projections P_0 and P_{-1} on the Laurent development to get a contradiction.

イロト 不同 トイヨト イヨト ヨー ろくで

Sketch of the proof:

$$\begin{array}{l} \underline{C_{\varphi}: H(\mathbb{C}\setminus\{0\}) \rightarrow H(\mathbb{C}\setminus\{0\}):} \\ \bullet \ C_{\varphi} \text{ weakly supercyclic } \Rightarrow \varphi: \mathbb{C}\setminus\{0\} \rightarrow \mathbb{C}\setminus\{0\} \text{ injective.} \\ \bullet \ \varphi \text{ has the form } \varphi(z) = az \text{ or } \varphi(z) = \frac{a}{z}, \text{ with } a \in \mathbb{C}\setminus\{0\}. \\ \bullet \ \varphi(z) = \frac{a}{z} \Rightarrow C_{\varphi}^2 = Id. \\ \bullet \ \varphi(z) = az: \\ \bullet \ \text{ If } |a| \leq 1: \text{ as in } \mathbb{D}\setminus\{0\}. \\ \bullet \ \text{ If } |a| > 1: \text{ as in } \mathbb{D}\setminus\{0\}, \text{ but using projection } P_1. \end{array}$$

2

メロト メロト メヨト メヨト

Section 3

 $C_{\varphi}: C^{m}(\mathbb{R}) \hookrightarrow C^{m}(\mathbb{R}), \ m \in \mathbb{N} \cup \{\infty\}$

3

イロン イヨン イヨン -

Supercyclicity and eigenvealues.

Theorem (Bayart-Matheron)

Let X be a separable lcHs and let $T \in \mathscr{L}(X)$ be supercyclic. Then either $\sigma_p(T') = \emptyset$ or $\sigma_p(T') = \{\lambda\}$, for some $\lambda \neq 0$. In the latter case, $\operatorname{Ker}(T' - \lambda)$ has dimension 1 and $\operatorname{Ker}(T' - \lambda)^n = \operatorname{Ker}(T' - \lambda)$ for all $n \in \mathbb{N}_0$. Moreover, there exists a (closed) *T*-invariant hyperplane $X_0 \subset X$ such that $T_0 := \lambda^{-1}T_{|X_0}$ is hypercyclic on X_0 .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Proposition (Albanese, J., Mele)

 $C_{\varphi}: C^{m}(\mathbb{R}) \to C^{m}(\mathbb{R})$ weakly supercyclic implies $\varphi'(x) \neq 0$ for all $x \in \mathbb{R}$ and φ has no fixed points.

э

イロン イヨン イヨン -

Proposition (Albanese, J., Mele)

 $C_{\varphi}: C^{m}(\mathbb{R}) \to C^{m}(\mathbb{R})$ weakly supercyclic implies $\varphi'(x) \neq 0$ for all $x \in \mathbb{R}$ and φ has no fixed points.

If $\varphi'(a) = 0$ then $C_{\varphi}(C^m(\mathbb{R})) \subseteq Ker\delta^1_a$. If $\varphi(a) = a$, δ^1_a and δ_a are two eigenvectors associated to $\varphi'(a)$ and a, and C_{φ} is not weakly supercyclic by Bayart-Matheron criterion.

< ロ > < 回 > < 回 > < 回 > < 回 > <

 $\mathcal{C}_{\varphi}: \mathcal{C}^m(\mathbb{R}) \to \mathcal{C}^m(\mathbb{R})$ is weakly supercyclic if and only if it is mixing.

э

イロト 不得 とくきとくきとう

 $C_{\varphi}: C^m(\mathbb{R}) \to C^m(\mathbb{R})$ is weakly supercyclic if and only if it is mixing.

Proof

• $\varphi(x) - x$ has constant sign

< 回 > < 回 > < 回 > < 回 > < 回

 $C_{\varphi}: C^m(\mathbb{R}) \to C^m(\mathbb{R})$ is weakly supercyclic if and only if it is mixing.

Proof

- $\varphi(x) x$ has constant sign
- φ cannot have any convergence sequence $(\varphi^n(z))$, then φ is strongly runaway

・ 同 ト ・ ヨ ト ・ ヨ ト

 $C_{\varphi}: C^m(\mathbb{R}) \to C^m(\mathbb{R})$ is weakly supercyclic if and only if it is mixing.

Proof

- $\varphi(x) x$ has constant sign
- φ cannot have any convergence sequence $(\varphi^n(z))$, then φ is strongly runaway
- Kalmes characterization of mixing (weighted) composition operators on C^m(R^d).

(人間) シスヨン スヨン 三日

 $C_{\varphi}: C(\mathbb{R})
ightarrow C(\mathbb{R})$ is supercyclic if and only if it is mixing.

э

イロン イヨン イヨン -

 $C_{\varphi}: C(\mathbb{R})
ightarrow C(\mathbb{R})$ is supercyclic if and only if it is mixing.

Proof

 $\bullet \ \varphi$ has to be injective and at most one fixed point

э

イロト 不得 とくきとくきとう

 $C_{\varphi}: C(\mathbb{R}) \to C(\mathbb{R})$ is supercyclic if and only if it is mixing.

Proof

- $\bullet \ \varphi$ has to be injective and at most one fixed point
- If φ have a fixed point, then φ or φ^{-1} have a convergent sequence of iterates

・ 同 ト ・ ヨ ト ・ ヨ ト

 $C_{\varphi}: C(\mathbb{R}) \to C(\mathbb{R})$ is supercyclic if and only if it is mixing.

Proof

- φ has to be injective and at most one fixed point
- If φ have a fixed point, then φ or φ^{-1} have a convergent sequence of iterates
- C_{φ} is supercyclic if and only if $C_{\varphi^{-1}}$ is.

イロト イポト イヨト イヨト

 $C_{\varphi}: C(\mathbb{R}) \to C(\mathbb{R})$ is supercyclic if and only if it is mixing.

Proof

- φ has to be injective and at most one fixed point
- If φ have a fixed point, then φ or φ^{-1} have a convergent sequence of iterates
- C_{φ} is supercyclic if and only if $C_{\varphi^{-1}}$ is.
- Kalmes characterization of mixing (weighted) composition operators on C(R^d).

ヘロト ヘワト ヘビト ヘビト

Bibliography

- A. A. Albanese, E. Jordá, C. Mele, *Dynamics of composition* operators on function spaces defined by local and global properties Journal of Mathematical Analysis and Applications, Volume 514, Issue 1, 1 October 2022, 126303.
- M.J. Beltrán-Meneu, E. Jordá, M. Murillo-Arcila, Supercyclicity of weighted composition operators on spaces of continuous functions, Collect. Math. 71 (2020), 493–509.
- T. Kalmes, Dynamics of weighted composition operators on function spaces defined by local properties, Studia Math. **249** (2019), 259–301.

イロト イポト イヨト イヨト