Compact Weighted Composition Operators on Spaces of Holomorphic Functions on Banach Spaces

David Jornet

Instituto Universitario de Matemática Pura y Aplicada IUMPA Universitat Politècnica de València, Spain

Joint work with J. Bonet, D. Santacreu, P. Sevilla-Peris

Workshop on Functional and Complex Analysis 2022 WFCA22

Valladolid, 20 – 23 June 2022

AIM

Let X be a complex Banach space, and B its open unit ball.

We study when a weighted composition operator $\mathcal{C}_{\psi, \varphi}$ is

 compact in the space of all bounded analytic functions H[∞](B),

・ 同 ト ・ ヨ ト ・ ヨ ト

AIM

Let X be a complex Banach space, and B its open unit ball.

We study when a weighted composition operator $C_{\psi,\varphi}$ is

- compact in the space of all bounded analytic functions H[∞](B),
- bounded, reflexive, Montel and (weakly) compact in the space of analytic functions of bounded type H_b(B).

in terms of the properties of the *symbol* φ and *weight* ψ .

ヘロト ヘアト ヘビト ヘビト

Let U be an open subset of the complex Banach space X.

- **()** A mapping $f: U \to \mathbb{C}$ is holomorphic if
 - a) f is continuous in U.

ヘロト ヘアト ヘビト ヘビト

ъ

Let U be an open subset of the complex Banach space X.

- **()** A mapping $f: U \to \mathbb{C}$ is holomorphic if
 - a) *f* is continuous in *U*.
 - b) for each $x \in U$ and $y \in X$ the complex function

 $\lambda \mapsto f(\mathbf{x} + \lambda \mathbf{y})$

is holomorphic on the open set $\{\lambda \in \mathbb{C} : x + \lambda y \in U\}$.

Let U be an open subset of the complex Banach space X.

- **()** A mapping $f: U \to \mathbb{C}$ is holomorphic if
 - a) *f* is continuous in *U*.
 - b) for each $x \in U$ and $y \in X$ the complex function

 $\lambda \mapsto f(\mathbf{x} + \lambda \mathbf{y})$

is holomorphic on the open set $\{\lambda \in \mathbb{C} : x + \lambda y \in U\}$.

2 Let Y be another Banach space. A mapping $f: U \to Y$ is holomorphic if for each $u \in Y'$ the complex function $u \circ f$ is holomorphic.

Let U be an open subset of the complex Banach space X.

- A mapping $f: U \to \mathbb{C}$ is holomorphic if
 - a) f is continuous in U.
 - b) for each $x \in U$ and $y \in X$ the complex function

 $\lambda \mapsto f(\mathbf{x} + \lambda \mathbf{y})$

is holomorphic on the open set $\{\lambda \in \mathbb{C} : x + \lambda y \in U\}$.

2 Let Y be another Banach space. A mapping $f: U \to Y$ is holomorphic if for each $u \in Y'$ the complex function $u \circ f$ is holomorphic.

Definition

If U = B we denote H(B) for the space of holomorphic functions $f : B \to \mathbb{C}$, endowed with the compact-open topology, denoted by τ_0 .

ヘロン 人間 とくほ とくほう

B unit ball of X

 A mapping *f*: *B* → C is called of *bounded type* if *f*(*rB*) is bounded for every 0 < *r* < 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

B unit ball of X

- A mapping *f*: *B* → C is called of *bounded type* if *f*(*rB*) is bounded for every 0 < *r* < 1.
- A mapping $\varphi \colon B \to B$ is called of *bounded type* if

 $\forall \ \mathbf{0} < r < \mathbf{1} \quad \exists \ \mathbf{0} < s < \mathbf{1} \quad : \ \varphi(\mathbf{rB}) \subseteq \mathbf{sB}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

B unit ball of X

- A mapping *f*: *B* → C is called of *bounded type* if *f*(*rB*) is bounded for every 0 < *r* < 1.
- A mapping $\varphi \colon B \to B$ is called of *bounded type* if

 $\forall \ \mathbf{0} < r < \mathbf{1} \quad \exists \ \mathbf{0} < s < \mathbf{1} \quad : \ \varphi(\mathbf{rB}) \subseteq \mathbf{sB}.$

Definition

H_b(B) the subspace of *H(B)* of functions of bounded type, which is Fréchet with the system of seminorms

$$\|f\|_r := \sup_{\|x\| < r} |f(x)|$$
, where $0 < r < 1$.

B unit ball of X

- A mapping *f*: *B* → C is called of *bounded type* if *f*(*rB*) is bounded for every 0 < *r* < 1.
- A mapping $\varphi \colon B \to B$ is called of *bounded type* if

$$\forall \ \mathbf{0} < \mathbf{r} < \mathbf{1} \quad \exists \ \mathbf{0} < \mathbf{s} < \mathbf{1} \quad : \ \varphi(\mathbf{rB}) \subseteq \mathbf{sB}.$$

Definition

H_b(B) the subspace of *H(B)* of functions of bounded type, which is Fréchet with the system of seminorms

$$\|f\|_r := \sup_{\|x\| < r} |f(x)|$$
, where $0 < r < 1$.

H[∞](*B*) the subspace of *H*(*B*) of bounded functions on *B*, which is Banach with the norm

$$\|f\|_{\infty} := \sup_{\|x\|<1} |f(x)|, \quad f \in H^{\infty}(B).$$

If $\psi \colon B \to \mathbb{C}$ and $\varphi \colon B \to B$ are holomorphic, the operator

 $C_{\psi,\varphi}: H(B)
ightarrow H(B), \quad f \mapsto \psi \cdot (f \circ \varphi)$

is well-defined and is called *weighted composition operator*. φ is called *symbol*, and ψ is called *weight*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

If $\psi \colon B \to \mathbb{C}$ and $\varphi \colon B \to B$ are holomorphic, the operator

 $C_{\psi,\varphi}: H(B) \to H(B), \quad f \mapsto \psi \cdot (f \circ \varphi)$

is well-defined and is called *weighted composition operator*. φ is called *symbol*, and ψ is called *weight*.

 Compactness of (weighted) composition operators defined on spaces of functions of one variable has been extensively studied (we mention works by different authors like Bonet, Contreras, Cowen, Díaz-Madrigal, Domański, Galindo, Hernández-Díaz, Lindström, MacCluer, Shapiro, Wikman...)

<ロト < 同ト < 回ト < 回ト = 三

If $\psi \colon B \to \mathbb{C}$ and $\varphi \colon B \to B$ are holomorphic, the operator

 $C_{\psi,\varphi}: H(B) \to H(B), \quad f \mapsto \psi \cdot (f \circ \varphi)$

is well-defined and is called *weighted composition operator*. φ is called *symbol*, and ψ is called *weight*.

- Compactness of (weighted) composition operators defined on spaces of functions of one variable has been extensively studied (we mention works by different authors like Bonet, Contreras, Cowen, Díaz-Madrigal, Domański, Galindo, Hernández-Díaz, Lindström, MacCluer, Shapiro, Wikman...)
- In spaces of holomorphic functions on infinite dimensional spaces the literature is much more scarce. Compactness of the composition operator C_φ defined on H[∞](B) was studied by Aron, Galindo and Lindström, and on H_b(B) by Galindo, Lourenço and Moraes.

Theorem

Assume φ , ψ are holomorphic and ψ is non-zero.

 C_{ψ,φ}: H_b(B) → H_b(B) is continuous if and only if ψ and φ are of bounded type.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Theorem

Assume φ , ψ are holomorphic and ψ is non-zero.

- C_{ψ,φ}: H_b(B) → H_b(B) is continuous if and only if ψ and φ are of bounded type.
- C_{ψ,φ}: H[∞](B) → H[∞](B) is continuous if and only if ψ ∈ H[∞](B).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

We consider the point evaluation functional $\delta_x \colon H^{\infty}(B) \to \mathbb{C}$ on $H^{\infty}(B)$, defined as $\delta_x(f) = f(x)$ for $x \in B$. It belongs to the dual space $H^{\infty}(B)'$ and, moreover, $\|\delta_x\|_{H^{\infty}(B)'} = 1$ for every $x \in B$.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三臣

Compactness on $H^{\infty}(B)$

We consider the point evaluation functional $\delta_x \colon H^{\infty}(B) \to \mathbb{C}$ on $H^{\infty}(B)$, defined as $\delta_x(f) = f(x)$ for $x \in B$. It belongs to the dual space $H^{\infty}(B)'$ and, moreover, $\|\delta_x\|_{H^{\infty}(B)'} = 1$ for every $x \in B$.

Lemma

The operator $C_{\psi,\varphi} \colon H^{\infty}(B) o H^{\infty}(B)$ is compact if and only if

 $\{\psi(\mathbf{x})\delta_{\varphi(\mathbf{x})}:\mathbf{x}\in\mathbf{B}\}$

is relatively compact in $H^{\infty}(B)'$.

イロト イポト イヨト イヨト 一臣

Compactness on $H^{\infty}(B)$

We consider the point evaluation functional $\delta_x \colon H^{\infty}(B) \to \mathbb{C}$ on $H^{\infty}(B)$, defined as $\delta_x(f) = f(x)$ for $x \in B$. It belongs to the dual space $H^{\infty}(B)'$ and, moreover, $\|\delta_x\|_{H^{\infty}(B)'} = 1$ for every $x \in B$.

Lemma

The operator $\mathcal{C}_{\psi, arphi} \colon \mathcal{H}^\infty(\mathcal{B}) o \mathcal{H}^\infty(\mathcal{B})$ is compact if and only if

 $\{\psi(\mathbf{x})\delta_{\varphi(\mathbf{x})}:\mathbf{x}\in\mathbf{B}\}$

is relatively compact in $H^{\infty}(B)'$.

Proposition

Let $C_{\psi,\varphi}$: $H^{\infty}(B) \to H^{\infty}(B)$ be compact. Then $(\psi \cdot \varphi)(B)$ is relatively compact in X.

ヘロン 人間 とくほ とくほ とう

3

Compactness on $H^{\infty}(B)$

We extend for the infinite-dimensional case a result of Contreras and Díaz-Madrigal (which treated the case $B = \mathbb{D}$).

Theorem

Let $\psi \in H^{\infty}(B)$ and $\varphi \colon B \to B$ be holomorphic. Then the following conditions are equivalent:

)
$$\mathcal{C}_{\psi, arphi} \colon \mathcal{H}^\infty(\mathcal{B}) o \mathcal{H}^\infty(\mathcal{B})$$
 is compact,

We extend for the infinite-dimensional case a result of Contreras and Díaz-Madrigal (which treated the case $B = \mathbb{D}$).

Theorem

Let $\psi \in H^{\infty}(B)$ and $\varphi \colon B \to B$ be holomorphic. Then the following conditions are equivalent:

- (a) $C_{\psi, arphi} \colon H^\infty(\mathcal{B}) o H^\infty(\mathcal{B})$ is compact,
- **(b)** $C_{\psi,\varphi}: H^{\infty}(B) \to H^{\infty}(B)$ is weakly compact and $(\psi \cdot \varphi)(B)$ is relatively compact in *X*,

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

We extend for the infinite-dimensional case a result of Contreras and Díaz-Madrigal (which treated the case $B = \mathbb{D}$).

Theorem

Let $\psi \in H^{\infty}(B)$ and $\varphi \colon B \to B$ be holomorphic. Then the following conditions are equivalent:

)
$$C_{\psi, arphi} \colon H^\infty(\mathcal{B}) o H^\infty(\mathcal{B})$$
 is compact,

(b) $C_{\psi,\varphi}: H^{\infty}(B) \to H^{\infty}(B)$ is weakly compact and $(\psi \cdot \varphi)(B)$ is relatively compact in *X*,

$$ig)$$
 There is 0 $<$ s $<$ 1 such that $arphi({\sf B})\subseteq$ sB,

$$\lim_{r \to 1^{-}} \sup_{\|\varphi(x)\| > r} |\psi(x)| = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• a) \Rightarrow b) is automatic from the last proposition.

David Jornet Compact WCO in Spaces of Holomorphic functions

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- a) \Rightarrow b) is automatic from the last proposition.
- b) ⇒ c) we proceed in a similar way to the corresponding result by Aron, Galindo and Lindström for composition operators assuming that neither (i) nor (ii) hold and proceed by contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- a) \Rightarrow b) is automatic from the last proposition.
- b) ⇒ c) we proceed in a similar way to the corresponding result by Aron, Galindo and Lindström for composition operators assuming that neither (i) nor (ii) hold and proceed by contradiction.
- c) ⇒ a) assume that C_{ψ,φ} is not compact. Then there is a sequence (f_n)_n ⊂ H[∞](B) with ||f_n||_∞ ≤ 1 and ε > 0 with

$$\|\psi\cdot(f_{n}\circ\varphi)-\psi\cdot(f_{m}\circ\varphi)\|_{\infty}>\varepsilon,$$

for every n < m.

イロト イ押ト イヨト イヨトー

- a) \Rightarrow b) is automatic from the last proposition.
- b) ⇒ c) we proceed in a similar way to the corresponding result by Aron, Galindo and Lindström for composition operators assuming that neither (i) nor (ii) hold and proceed by contradiction.
- c) ⇒ a) assume that C_{ψ,φ} is not compact. Then there is a sequence (f_n)_n ⊂ H[∞](B) with ||f_n||_∞ ≤ 1 and ε > 0 with

$$\|\psi\cdot(f_{n}\circ\varphi)-\psi\cdot(f_{m}\circ\varphi)\|_{\infty}>\varepsilon,$$

for every n < m. We can select a set $\{x_{n,m} : n < m\} \subseteq B$:

 $|\psi(x_{n,m})f_n(\varphi(x_{n,m})) - \psi(x_{n,m})f_m(\varphi(x_{n,m}))| > \varepsilon$, for n < m.

Then the set $(\varphi(x_{n,m}))_{n < m}$ is not relatively compact in *B*.

イロト 不得 とくほ とくほ とうほ

- a) \Rightarrow b) is automatic from the last proposition.
- b) ⇒ c) we proceed in a similar way to the corresponding result by Aron, Galindo and Lindström for composition operators assuming that neither (i) nor (ii) hold and proceed by contradiction.
- c) ⇒ a) assume that C_{ψ,φ} is not compact. Then there is a sequence (f_n)_n ⊂ H[∞](B) with ||f_n||_∞ ≤ 1 and ε > 0 with

$$\|\psi\cdot(f_{n}\circ\varphi)-\psi\cdot(f_{m}\circ\varphi)\|_{\infty}>\varepsilon,$$

for every n < m. We can select a set $\{x_{n,m} : n < m\} \subseteq B$:

 $|\psi(\mathbf{x}_{n,m})f_n(\varphi(\mathbf{x}_{n,m})) - \psi(\mathbf{x}_{n,m})f_m(\varphi(\mathbf{x}_{n,m}))| > \varepsilon, \text{ for } n < m.$

Then the set $(\varphi(x_{n,m}))_{n < m}$ is not relatively compact in *B*. Now, using the following technical lemma gives a contradiction with the fact that (f_n) is bounded in $H^{\infty}(B)$.

Lemma

Let $\psi \in H^{\infty}(B)$, $\psi \neq 0$, and $\varphi : B \to B$ be holomorphic. Assume $(\psi \cdot \varphi)(B)$ is relatively compact in X and that one of the following holds:

(i) There is 0 < s < 1 such that $\varphi(B) \subseteq sB$.

(ii)
$$\lim_{r\to 1^-} \sup_{\|\varphi(x)\|>r} |\psi(x)| = 0.$$

Then, for each sequence (x_n) such that $(\varphi(x_n))$ is not relatively compact in *B*, there is a subsequence (x_{n_k}) such that

$$\lim_{K\to\infty}|\psi(x_{n_k})|=0.$$

イロト イポト イヨト イヨト

Case of $H_b(B)$

Definition

Let *E*, *F* be locally convex Hausdorff spaces and $T : E \to F$ a continuous linear operator. We say that:

• *T* is *bounded (compact, weakly compact)* if there is a 0-neighborhood *U* such that *T*(*U*) is bounded (relatively compact, weakly relatively compact) in *F*.

Case of $H_b(B)$

Definition

Let *E*, *F* be locally convex Hausdorff spaces and $T : E \to F$ a continuous linear operator. We say that:

- *T* is *bounded (compact, weakly compact)* if there is a 0-neighborhood *U* such that *T*(*U*) is bounded (relatively compact, weakly relatively compact) in *F*.
- T is Montel (reflexive) if it maps bounded sets into relatively compact (weakly relatively compact) sets in F.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *E*, *F* be locally convex Hausdorff spaces and $T : E \to F$ a continuous linear operator. We say that:

- *T* is *bounded (compact, weakly compact)* if there is a 0-neighborhood *U* such that *T*(*U*) is bounded (relatively compact, weakly relatively compact) in *F*.
- T is Montel (reflexive) if it maps bounded sets into relatively compact (weakly relatively compact) sets in F.

Proposition

Let E be a quasinormable Fréchet space. If $T : E \to E$ is a bounded linear operator which is also Montel (reflexive), then T is compact (weakly compact).

ヘロト 人間 ト ヘヨト ヘヨト

Let *E*, *F* be locally convex Hausdorff spaces and $T : E \to F$ a continuous linear operator. We say that:

- *T* is *bounded (compact, weakly compact)* if there is a 0-neighborhood *U* such that *T*(*U*) is bounded (relatively compact, weakly relatively compact) in *F*.
- T is Montel (reflexive) if it maps bounded sets into relatively compact (weakly relatively compact) sets in F.

Proposition

Let E be a quasinormable Fréchet space. If $T : E \to E$ is a bounded linear operator which is also Montel (reflexive), then T is compact (weakly compact).

The space $H_b(B)$ is quasinormable (Ansemil, Ponte).

Bounded operators and compact operators

Theorem

Let $\varphi : B \rightarrow B$ be holomorphic. The following are equivalent:

• there is 0 < s < 1 such that $\varphi(B) \subseteq sB$;

David Jornet Compact WCO in Spaces of Holomorphic functions

-∢ ≣ →

3

Bounded operators and compact operators

Theorem

Let $\varphi : B \rightarrow B$ be holomorphic. The following are equivalent:

- there is 0 < s < 1 such that $\varphi(B) \subseteq sB$;
- **2** C_{φ} : $H_b(B) \rightarrow H_b(B)$ is bounded;

David Jornet Compact WCO in Spaces of Holomorphic functions

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Let $\varphi : B \rightarrow B$ be holomorphic. The following are equivalent:

- there is 0 < s < 1 such that $\varphi(B) \subseteq sB$;
- **2** C_{φ} : $H_b(B) \rightarrow H_b(B)$ is bounded;
- 3 $C_{\psi,\varphi}: H_b(B) \to H_b(B)$ is bounded for some $\psi \in H_b(B)$, $\psi \neq 0$;

・聞き ・ ほき・ ・ ほう・ … ほ

Theorem

Let $\varphi : B \rightarrow B$ be holomorphic. The following are equivalent:

- **1** there is 0 < s < 1 such that $\varphi(B) \subseteq sB$;
- 2 C_{φ} : $H_b(B) \rightarrow H_b(B)$ is bounded;
- 3 $C_{\psi,\varphi}$: $H_b(B) \rightarrow H_b(B)$ is bounded for some $\psi \in H_b(B)$, $\psi \neq 0$;
- $C_{\psi,\varphi}: H_b(B) \to H_b(B)$ is bounded for every $\psi \in H_b(B)$.

イロト イポト イヨト イヨト 一臣

Corollary

Let B_N be the open unit ball of \mathbb{C}^N with some norm. Let $\varphi: B_N \to B_N$ be holomorphic. The following are equivalent: 1 there is 0 < s < 1 such that $\varphi(B_N) \subseteq sB_N$; 2 $C_{\varphi}: H(B_N) \to H(B_N)$ is compact; 3 $C_{\psi,\varphi}: H(B_N) \to H(B_N)$ is compact for some $\psi \in H(B_N), \ \psi \neq 0$;

• $C_{\psi,\varphi}: H(B_N) \to H(B_N)$ is compact for every $\psi \in H(B_N)$.

<ロ> (四) (四) (三) (三) (三)

Corollary

Let B_N be the open unit ball of \mathbb{C}^N with some norm. Let $\varphi: B_N \to B_N$ be holomorphic. The following are equivalent: 1 there is 0 < s < 1 such that $\varphi(B_N) \subseteq sB_N$; 2 $C_{\varphi}: H(B_N) \to H(B_N)$ is compact; 3 $C_{\psi,\varphi}: H(B_N) \to H(B_N)$ is compact for some $\psi \in H(B_N), \ \psi \neq 0$;

• $C_{\psi,\varphi}: H(B_N) \to H(B_N)$ is compact for every $\psi \in H(B_N)$.

Now, using the previous Proposition:

Corollary

Let $0 \neq \psi \in H_b(B)$ and $\varphi : B \to B$ be holomorphic. Then $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is compact if and only if $C_{\psi,\varphi}$ is Montel, and There is 0 < s < 1 such that $\varphi(B) \subseteq sB$. We denote by τ_0 the compact-open topology.

Lemma

Let $T : H_b(B) \to H_b(B)$ be a continuous linear operator such that it is also (τ_0, τ_0) -continuous. Consider:

(i)
$$T: H_b(B) \rightarrow H_b(B)$$
 is Montel.

(ii) If $(f_i) \subset H_b(B)$ is bounded and $f_i \stackrel{\tau_0}{\to} 0$, then $Tf_i \to 0$ in $H_b(B)$.

イロト イポト イヨト イヨト 一日

We denote by τ_0 the compact-open topology.

Lemma

Let $T : H_b(B) \to H_b(B)$ be a continuous linear operator such that it is also (τ_0, τ_0) -continuous. Consider:

(i)
$$T: H_b(B) \rightarrow H_b(B)$$
 is Montel.

(ii) If
$$(f_i) \subset H_b(B)$$
 is bounded and $f_i \stackrel{\tau_0}{\to} 0$, then $Tf_i \to 0$ in $H_b(B)$.

Then (i) implies (ii). If, moreover, every compact set in H(B) is sequentially compact, then (ii) implies (i).

<ロ> <問> <問> < 回> < 回> < 回> < 回> < 回

David Jornet Compact WCO in Spaces of Holomorphic functions

< ∃→

э

• YES, when X is a separable Banach space.

.⊒...>

- YES, when X is a separable Banach space.
- Under other (technical) conditions (Cascales, Orihuela).

< ⊒ >

- YES, when X is a separable Banach space.
- Under other (technical) conditions (Cascales, Orihuela).
- In general it is not true:

Example

It is known that $\overline{B_{\ell_{\infty}'}}$ (the closed unit ball of ℓ_{∞}') is not sequentially $\sigma(\ell_{\infty}', \ell_{\infty})$ -compact. We deduce that there are compact sets in $H(B_{\ell_{\infty}})$ that are not sequentially compact.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Proposition

Assume $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is continuous. Let 0 < r < 1 and denote

$$A_r := \{\psi(\mathbf{x})\delta_{\varphi(\mathbf{x})} : \|\mathbf{x}\| \leq r\}.$$

David Jornet Compact WCO in Spaces of Holomorphic functions

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Proposition

Assume $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is continuous. Let 0 < r < 1 and denote

$$A_r := \{\psi(\mathbf{x})\delta_{\varphi(\mathbf{x})} : \|\mathbf{x}\| \leq r\}.$$

If C_{ψ,φ} is (reflexive) Montel, then for each 0 < r < 1 the set A_r is (weakly) relatively compact in H_b(B)'.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition

Assume $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is continuous. Let 0 < r < 1 and denote

$$A_r := \{\psi(\mathbf{x})\delta_{\varphi(\mathbf{x})} : \|\mathbf{x}\| \leq r\}.$$

- If C_{ψ,φ} is (reflexive) Montel, then for each 0 < r < 1 the set A_r is (weakly) relatively compact in H_b(B)'.
- Conversely, if A_r is relatively compact in H_b(B)' for each 0 < r < 1, then C_{ψ,φ} is Montel.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三臣

Proposition

Assume $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is continuous. Let 0 < r < 1 and denote

$$A_r := \{\psi(\mathbf{x})\delta_{\varphi(\mathbf{x})} : \|\mathbf{x}\| \leq r\}.$$

- If C_{ψ,φ} is (reflexive) Montel, then for each 0 < r < 1 the set A_r is (weakly) relatively compact in H_b(B)'.
- Conversely, if A_r is relatively compact in H_b(B)' for each 0 < r < 1, then C_{ψ,φ} is Montel.

Corollary

If $C_{\psi,\varphi}$: $H_b(B) \to H_b(B)$ is (reflexive) Montel, then the set $(\psi \cdot \varphi)(rB)$ is (weakly) relatively compact in X for every 0 < r < 1.

Let ψ and φ be holomorphic of bounded type. We have:

• $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is Montel if and only if $(\psi \cdot \varphi)(rB)$ is relatively compact in X for every 0 < r < 1;

David Jornet Compact WCO in Spaces of Holomorphic functions

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let ψ and φ be holomorphic of bounded type. We have:

- $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is Montel if and only if $(\psi \cdot \varphi)(rB)$ is relatively compact in X for every 0 < r < 1;
- If C_{ψ,φ} : H_b(B) → H_b(B) is reflexive, then (ψ · φ)(rB) is weakly relatively compact in X for every 0 < r < 1.</p>

Let ψ and φ be holomorphic of bounded type. We have:

- $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is Montel if and only if $(\psi \cdot \varphi)(rB)$ is relatively compact in X for every 0 < r < 1;
- If C_{ψ,φ} : H_b(B) → H_b(B) is reflexive, then (ψ · φ)(rB) is weakly relatively compact in X for every 0 < r < 1. Moreover, if X has the Schur property and (ψ · φ)(rB) is weakly relatively compact in X, then C_{ψ,φ} : H_b(B) → H_b(B) is reflexive.

イロト イ理ト イヨト イヨト

Let ψ and φ be of bounded type. T.F.A.E.:

- (i) $C_{\psi,\varphi}: H_b(B) \to H_b(B)$ is compact;
- (ii) The following two conditions hold:
 - (a) $(\psi \cdot \varphi)(rB)$ is relatively compact in X for every 0 < r < 1.
 - (b) There is 0 < s < 1 such that $\varphi(B) \subseteq sB$.

イロト イポト イヨト イヨト 一日

Let ψ and φ be of bounded type. T.F.A.E.:

(i) $C_{\psi,\varphi}: H_b(B) \to H_b(B)$ is compact;

(ii) The following two conditions hold:

- (a) $(\psi \cdot \varphi)(rB)$ is relatively compact in X for every 0 < r < 1.
- (b) There is 0 < s < 1 such that $\varphi(B) \subseteq sB$.

Theorem 2

Let ψ and φ be holomorphic of bounded type:

(i)
$$C_{\psi,\varphi}: H_b(B) \to H_b(B)$$
 is weakly compact;

(ii) The following two conditions hold:

- (a) $(\psi \cdot \varphi)(rB)$ is weakly relatively compact in X for every 0 < r < 1.
- (b) There is 0 < s < 1 such that $\varphi(B) \subseteq sB$.

イロト イポト イヨト イヨト

Let ψ and φ be of bounded type. T.F.A.E.:

(i) $C_{\psi,\varphi}: H_b(B) \to H_b(B)$ is compact;

(ii) The following two conditions hold:

- (a) $(\psi \cdot \varphi)(rB)$ is relatively compact in X for every 0 < r < 1.
- (b) There is 0 < s < 1 such that $\varphi(B) \subseteq sB$.

Theorem 2

Let ψ and φ be holomorphic of bounded type:

(i)
$$C_{\psi,\varphi}: H_b(B) \to H_b(B)$$
 is weakly compact;

(ii) The following two conditions hold:

(a) $(\psi \cdot \varphi)(rB)$ is weakly relatively compact in X for every 0 < r < 1.

(b) There is 0 < s < 1 such that $\varphi(B) \subseteq sB$.

Then (i) \Rightarrow (ii) and, if X has the Schur property, (ii) \Rightarrow (i).

<ロ> (四) (四) (三) (三) (三)

Corollary

Let φ be holomorphic. Then, $C_{\varphi} : H_b(B) \to H_b(B)$ is compact if and only if there is 0 < s < 1 such that $\varphi(B) \subseteq sB$ and for each 0 < r < 1 the set $\varphi(rB)$ is relatively compact in X.

イロト イポト イヨト イヨト 三日

Corollary

Let φ be holomorphic. Then, $C_{\varphi} : H_b(B) \to H_b(B)$ is compact if and only if there is 0 < s < 1 such that $\varphi(B) \subseteq sB$ and for each 0 < r < 1 the set $\varphi(rB)$ is relatively compact in X.

Open problem

We do not know if there is $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ Montel (compact) so that $C_{\varphi} : H_b(B) \to H_b(B)$ is not Montel (compact).

イロト イポト イヨト イヨト 一日

However, we can see that this is not the case when φ is holomorphic of bounded type and open.

< ∃⇒

э

However, we can see that this is not the case when φ is holomorphic of bounded type and open.

Proposition

Let $\psi \in H_b(B)$ and $\varphi : B \to B$ be holomorphic of bounded type and open. If $C_{\psi,\varphi} : H_b(B) \to H_b(B)$ is Montel then X is finite dimensional. Consequently, $C_{\varphi} : H_b(B) \to H_b(B)$ is also Montel.

Examples

Example

Let $\varphi:\mathbb{D}\to\mathbb{D}$ and $\psi\in H^\infty(\mathbb{D})$ defined by

$$\varphi(z) = rac{1+z}{2}$$
 and $\psi(z) = 1-z$.

Then $C_{\psi,\varphi}: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ is compact, but $C_{\varphi} = C_{1,\varphi}: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ is not compact.

イロト イポト イヨト イヨト 一日

Examples

Example

Let $\varphi : \mathbb{D} \to \mathbb{D}$ and $\psi \in H^{\infty}(\mathbb{D})$ defined by

$$\varphi(z)=rac{1+z}{2}$$
 and $\psi(z)=1-z.$

Then $C_{\psi,\varphi}: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ is compact, but $C_{\varphi} = C_{1,\varphi}: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ is not compact.

Example

Assume that *X* is a Banach space of infinite dimension. Consider $\varphi : B \to B$ defined by $\varphi(x) = \frac{1}{2}x$.

• The operator $C_{\varphi}: H^{\infty}(B) \to H^{\infty}(B)$ is continuous but it is not compact, therefore it is bounded but it is not Montel.

Examples

Example

Let $\varphi : \mathbb{D} \to \mathbb{D}$ and $\psi \in H^{\infty}(\mathbb{D})$ defined by

$$\varphi(z)=rac{1+z}{2}$$
 and $\psi(z)=1-z.$

Then $C_{\psi,\varphi}: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ is compact, but $C_{\varphi} = C_{1,\varphi}: H^{\infty}(\mathbb{D}) \to H^{\infty}(\mathbb{D})$ is not compact.

Example

Assume that *X* is a Banach space of infinite dimension. Consider $\varphi : B \to B$ defined by $\varphi(x) = \frac{1}{2}x$.

- The operator $C_{\varphi}: H^{\infty}(B) \to H^{\infty}(B)$ is continuous but it is not compact, therefore it is bounded but it is not Montel.
- 2 The operator C_φ : H_b(B) → H_b(B) is bounded but it is not Montel.

Example

Let $\varphi: B_{c_0} \to B_{c_0}$ defined by

$$\varphi(x)=\frac{1}{2}\left(x_{n}^{n}\right).$$

Then the composition operator C_{φ} is compact in $H_b(B_{c_0})$, but it is not compact in $H^{\infty}(B_{c_0})$.

David Jornet Compact WCO in Spaces of Holomorphic functions

ヘロト 人間 とくほ とくほ とう

3

Example

Let $\varphi: B_{c_0} \to B_{c_0}$ defined by

$$\varphi(x)=\frac{1}{2}\left(x_{n}^{n}\right).$$

Then the composition operator C_{φ} is compact in $H_b(B_{c_0})$, but it is not compact in $H^{\infty}(B_{c_0})$.

Example

Let $\varphi : B_{c_0} \to B_{c_0}$ defined by $\varphi(x) = (x_n^n)$. The composition operator $C_{\varphi} : H_b(B_{c_0}) \to H_b(B_{c_0})$ is Montel, but not bounded and hence, not compact either.

ヘロト 人間 とくほ とくほ とう