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AIM
Let X be a complex Banach space, and B its open unit ball.

We study when a weighted composition operator Cψ,ϕ is

compact in the space of all bounded analytic functions
H∞(B),
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AIM
Let X be a complex Banach space, and B its open unit ball.

We study when a weighted composition operator Cψ,ϕ is

compact in the space of all bounded analytic functions
H∞(B),
bounded, reflexive, Montel and (weakly) compact in the
space of analytic functions of bounded type Hb(B).

in terms of the properties of the symbol ϕ and weight ψ.
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Definition
Let U be an open subset of the complex Banach space X .

A mapping f : U → C is holomorphic if
a) f is continuous in U.
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Definition
Let U be an open subset of the complex Banach space X .

A mapping f : U → C is holomorphic if
a) f is continuous in U.
b) for each x ∈ U and y ∈ X the complex function

λ "→ f (x + λy)

is holomorphic on the open set {λ ∈ C : x + λy ∈ U}.
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Definition
Let U be an open subset of the complex Banach space X .

A mapping f : U → C is holomorphic if
a) f is continuous in U.
b) for each x ∈ U and y ∈ X the complex function

λ "→ f (x + λy)

is holomorphic on the open set {λ ∈ C : x + λy ∈ U}.

Let Y be another Banach space. A mapping f : U → Y is
holomorphic if for each u ∈ Y ′ the complex function u ◦ f is
holomorphic.
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Definition
Let U be an open subset of the complex Banach space X .

A mapping f : U → C is holomorphic if
a) f is continuous in U.
b) for each x ∈ U and y ∈ X the complex function

λ "→ f (x + λy)

is holomorphic on the open set {λ ∈ C : x + λy ∈ U}.

Let Y be another Banach space. A mapping f : U → Y is
holomorphic if for each u ∈ Y ′ the complex function u ◦ f is
holomorphic.

Definition
If U = B we denote H(B) for the space of holomorphic
functions f : B → C, endowed with the compact-open topology,
denoted by τ0.
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Definition
B unit ball of X

A mapping f : B → C is called of bounded type if f (rB) is
bounded for every 0 < r < 1.
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Definition
B unit ball of X

A mapping f : B → C is called of bounded type if f (rB) is
bounded for every 0 < r < 1.
A mapping ϕ : B → B is called of bounded type if

∀ 0 < r < 1 ∃ 0 < s < 1 : ϕ(rB) ⊆ sB.
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Definition
B unit ball of X

A mapping f : B → C is called of bounded type if f (rB) is
bounded for every 0 < r < 1.
A mapping ϕ : B → B is called of bounded type if

∀ 0 < r < 1 ∃ 0 < s < 1 : ϕ(rB) ⊆ sB.

Definition
Hb(B) the subspace of H(B) of functions of bounded type,
which is Fréchet with the system of seminorms

‖f‖r := sup
‖x‖<r

|f (x)|, where 0 < r < 1.
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Definition
B unit ball of X

A mapping f : B → C is called of bounded type if f (rB) is
bounded for every 0 < r < 1.
A mapping ϕ : B → B is called of bounded type if

∀ 0 < r < 1 ∃ 0 < s < 1 : ϕ(rB) ⊆ sB.

Definition
Hb(B) the subspace of H(B) of functions of bounded type,
which is Fréchet with the system of seminorms

‖f‖r := sup
‖x‖<r

|f (x)|, where 0 < r < 1.

H∞(B) the subspace of H(B) of bounded functions on B,
which is Banach with the norm

‖f‖∞ := sup
‖x‖<1

|f (x)|, f ∈ H∞(B).
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Definition
If ψ : B → C and ϕ : B → B are holomorphic, the operator

Cψ,ϕ : H(B) → H(B), f (→ ψ · (f ◦ ϕ)

is well-defined and is called weighted composition operator. ϕ
is called symbol, and ψ is called weight.
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Definition
If ψ : B → C and ϕ : B → B are holomorphic, the operator

Cψ,ϕ : H(B) → H(B), f (→ ψ · (f ◦ ϕ)

is well-defined and is called weighted composition operator. ϕ
is called symbol, and ψ is called weight.

Compactness of (weighted) composition operators defined
on spaces of functions of one variable has been
extensively studied (we mention works by different authors
like Bonet, Contreras, Cowen, Díaz-Madrigal, Domański,
Galindo, Hernández-Díaz, Lindström, MacCluer, Shapiro,
Wikman...)
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Definition
If ψ : B → C and ϕ : B → B are holomorphic, the operator

Cψ,ϕ : H(B) → H(B), f (→ ψ · (f ◦ ϕ)

is well-defined and is called weighted composition operator. ϕ
is called symbol, and ψ is called weight.

Compactness of (weighted) composition operators defined
on spaces of functions of one variable has been
extensively studied (we mention works by different authors
like Bonet, Contreras, Cowen, Díaz-Madrigal, Domański,
Galindo, Hernández-Díaz, Lindström, MacCluer, Shapiro,
Wikman...)
In spaces of holomorphic functions on infinite dimensional
spaces the literature is much more scarce. Compactness
of the composition operator Cϕ defined on H∞(B) was
studied by Aron, Galindo and Lindström, and on Hb(B) by
Galindo, Lourenço and Moraes.
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Continuity

Theorem
Assume ϕ, ψ are holomorphic and ψ is non-zero.

Cψ,ϕ : Hb(B) → Hb(B) is continuous if and only if ψ and ϕ
are of bounded type.
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Continuity

Theorem
Assume ϕ, ψ are holomorphic and ψ is non-zero.

Cψ,ϕ : Hb(B) → Hb(B) is continuous if and only if ψ and ϕ
are of bounded type.
Cψ,ϕ : H∞(B) → H∞(B) is continuous if and only if
ψ ∈ H∞(B).
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Compactness on H∞(B)

We consider the point evaluation functional δx : H∞(B) → C on
H∞(B), defined as δx(f ) = f (x) for x ∈ B. It belongs to the dual
space H∞(B)′ and, moreover, ‖δx‖H∞(B)′ = 1 for every x ∈ B.
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Compactness on H∞(B)

We consider the point evaluation functional δx : H∞(B) → C on
H∞(B), defined as δx(f ) = f (x) for x ∈ B. It belongs to the dual
space H∞(B)′ and, moreover, ‖δx‖H∞(B)′ = 1 for every x ∈ B.

Lemma

The operator Cψ,ϕ : H∞(B) → H∞(B) is compact if and only if

{ψ(x)δϕ(x) : x ∈ B}

is relatively compact in H∞(B)′.
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Compactness on H∞(B)

We consider the point evaluation functional δx : H∞(B) → C on
H∞(B), defined as δx(f ) = f (x) for x ∈ B. It belongs to the dual
space H∞(B)′ and, moreover, ‖δx‖H∞(B)′ = 1 for every x ∈ B.

Lemma

The operator Cψ,ϕ : H∞(B) → H∞(B) is compact if and only if

{ψ(x)δϕ(x) : x ∈ B}

is relatively compact in H∞(B)′.

Proposition

Let Cψ,ϕ : H∞(B) → H∞(B) be compact. Then (ψ · ϕ)(B) is
relatively compact in X.
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Compactness on H∞(B)

We extend for the infinite-dimensional case a result of
Contreras and Díaz-Madrigal (which treated the case B = D).

Theorem
Let ψ ∈ H∞(B) and ϕ : B → B be holomorphic. Then the
following conditions are equivalent:

Cψ,ϕ : H∞(B) → H∞(B) is compact,
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Compactness on H∞(B)

We extend for the infinite-dimensional case a result of
Contreras and Díaz-Madrigal (which treated the case B = D).

Theorem
Let ψ ∈ H∞(B) and ϕ : B → B be holomorphic. Then the
following conditions are equivalent:

Cψ,ϕ : H∞(B) → H∞(B) is compact,
Cψ,ϕ : H∞(B) → H∞(B) is weakly compact and (ψ · ϕ)(B) is
relatively compact in X,
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Compactness on H∞(B)

We extend for the infinite-dimensional case a result of
Contreras and Díaz-Madrigal (which treated the case B = D).

Theorem
Let ψ ∈ H∞(B) and ϕ : B → B be holomorphic. Then the
following conditions are equivalent:

Cψ,ϕ : H∞(B) → H∞(B) is compact,
Cψ,ϕ : H∞(B) → H∞(B) is weakly compact and (ψ · ϕ)(B) is
relatively compact in X,
(ψ · ϕ)(B) is relatively compact in X and one of the following
properties hold:

There is 0 < s < 1 such that ϕ(B) ⊆ sB,
lim

r→1−
sup

‖ϕ(x)‖>r
|ψ(x)| = 0.
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Sketch of proof

a) ⇒ b) is automatic from the last proposition.
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Sketch of proof

a) ⇒ b) is automatic from the last proposition.
b) ⇒ c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindström for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.
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Sketch of proof

a) ⇒ b) is automatic from the last proposition.
b) ⇒ c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindström for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.
c) ⇒ a) assume that Cψ,ϕ is not compact. Then there is a
sequence (fn)n ⊂ H∞(B) with ‖fn‖∞ ≤ 1 and ε > 0 with

‖ψ · (fn ◦ ϕ)− ψ · (fm ◦ ϕ)‖∞ > ε,

for every n < m.
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Sketch of proof

a) ⇒ b) is automatic from the last proposition.
b) ⇒ c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindström for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.
c) ⇒ a) assume that Cψ,ϕ is not compact. Then there is a
sequence (fn)n ⊂ H∞(B) with ‖fn‖∞ ≤ 1 and ε > 0 with

‖ψ · (fn ◦ ϕ)− ψ · (fm ◦ ϕ)‖∞ > ε,

for every n < m. We can select a set {xn,m : n < m} ⊆ B:

|ψ(xn,m)fn(ϕ(xn,m))− ψ(xn,m)fm(ϕ(xn,m))| > ε, for n < m.

Then the set (ϕ(xn,m))n<m is not relatively compact in B.
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Sketch of proof

a) ⇒ b) is automatic from the last proposition.
b) ⇒ c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindström for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.
c) ⇒ a) assume that Cψ,ϕ is not compact. Then there is a
sequence (fn)n ⊂ H∞(B) with ‖fn‖∞ ≤ 1 and ε > 0 with

‖ψ · (fn ◦ ϕ)− ψ · (fm ◦ ϕ)‖∞ > ε,

for every n < m. We can select a set {xn,m : n < m} ⊆ B:

|ψ(xn,m)fn(ϕ(xn,m))− ψ(xn,m)fm(ϕ(xn,m))| > ε, for n < m.

Then the set (ϕ(xn,m))n<m is not relatively compact in B.
Now, using the following technical lemma gives a
contradiction with the fact that (fn) is bounded in H∞(B).
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Sketch of proof II

Lemma
Let ψ ∈ H∞(B), ψ ∕= 0, and ϕ : B → B be holomorphic.
Assume (ψ ·ϕ)(B) is relatively compact in X and that one of the
following holds:

(i) There is 0 < s < 1 such that ϕ(B) ⊆ sB.
(ii) lim

r→1−
sup

‖ϕ(x)‖>r
|ψ(x)| = 0.

Then, for each sequence (xn) such that (ϕ(xn)) is not relatively
compact in B, there is a subsequence (xnk ) such that

lim
k→∞

|ψ(xnk )| = 0.
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Case of Hb(B)

Definition
Let E ,F be locally convex Hausdorff spaces and T : E → F a
continuous linear operator. We say that:

T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T (U) is bounded (relatively
compact, weakly relatively compact) in F .
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Case of Hb(B)

Definition
Let E ,F be locally convex Hausdorff spaces and T : E → F a
continuous linear operator. We say that:

T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T (U) is bounded (relatively
compact, weakly relatively compact) in F .
T is Montel (reflexive) if it maps bounded sets into
relatively compact (weakly relatively compact) sets in F .
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Case of Hb(B)

Definition
Let E ,F be locally convex Hausdorff spaces and T : E → F a
continuous linear operator. We say that:

T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T (U) is bounded (relatively
compact, weakly relatively compact) in F .
T is Montel (reflexive) if it maps bounded sets into
relatively compact (weakly relatively compact) sets in F .

Proposition

Let E be a quasinormable Fréchet space. If T : E → E is a
bounded linear operator which is also Montel (reflexive), then T
is compact (weakly compact).
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Case of Hb(B)

Definition
Let E ,F be locally convex Hausdorff spaces and T : E → F a
continuous linear operator. We say that:

T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T (U) is bounded (relatively
compact, weakly relatively compact) in F .
T is Montel (reflexive) if it maps bounded sets into
relatively compact (weakly relatively compact) sets in F .

Proposition

Let E be a quasinormable Fréchet space. If T : E → E is a
bounded linear operator which is also Montel (reflexive), then T
is compact (weakly compact).

The space Hb(B) is quasinormable (Ansemil, Ponte).
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Bounded operators and compact operators

Theorem

Let ϕ : B → B be holomorphic. The following are equivalent:
there is 0 < s < 1 such that ϕ(B) ⊆ sB;
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Bounded operators and compact operators

Theorem

Let ϕ : B → B be holomorphic. The following are equivalent:
there is 0 < s < 1 such that ϕ(B) ⊆ sB;
Cϕ : Hb(B) → Hb(B) is bounded;
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Bounded operators and compact operators

Theorem

Let ϕ : B → B be holomorphic. The following are equivalent:
there is 0 < s < 1 such that ϕ(B) ⊆ sB;
Cϕ : Hb(B) → Hb(B) is bounded;
Cψ,ϕ : Hb(B) → Hb(B) is bounded for some ψ ∈ Hb(B),
ψ ∕= 0;
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Bounded operators and compact operators

Theorem

Let ϕ : B → B be holomorphic. The following are equivalent:
there is 0 < s < 1 such that ϕ(B) ⊆ sB;
Cϕ : Hb(B) → Hb(B) is bounded;
Cψ,ϕ : Hb(B) → Hb(B) is bounded for some ψ ∈ Hb(B),
ψ ∕= 0;
Cψ,ϕ : Hb(B) → Hb(B) is bounded for every ψ ∈ Hb(B).
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Corollary

Let BN be the open unit ball of CN with some norm. Let
ϕ : BN → BN be holomorphic. The following are equivalent:

there is 0 < s < 1 such that ϕ(BN) ⊆ sBN ;
Cϕ : H(BN) → H(BN) is compact;
Cψ,ϕ : H(BN) → H(BN) is compact for some
ψ ∈ H(BN), ψ ∕= 0;
Cψ,ϕ : H(BN) → H(BN) is compact for every ψ ∈ H(BN).
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Corollary

Let BN be the open unit ball of CN with some norm. Let
ϕ : BN → BN be holomorphic. The following are equivalent:

there is 0 < s < 1 such that ϕ(BN) ⊆ sBN ;
Cϕ : H(BN) → H(BN) is compact;
Cψ,ϕ : H(BN) → H(BN) is compact for some
ψ ∈ H(BN), ψ ∕= 0;
Cψ,ϕ : H(BN) → H(BN) is compact for every ψ ∈ H(BN).

Now, using the previous Proposition:

Corollary

Let 0 ∕= ψ ∈ Hb(B) and ϕ : B → B be holomorphic. Then
Cψ,ϕ : Hb(B) → Hb(B) is compact if and only if

Cψ,ϕ is Montel, and
There is 0 < s < 1 such that ϕ(B) ⊆ sB.
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We denote by τ0 the compact-open topology.

Lemma

Let T : Hb(B) → Hb(B) be a continuous linear operator such
that it is also (τ0, τ0)-continuous. Consider:

(i) T : Hb(B) → Hb(B) is Montel.

(ii) If (fi) ⊂ Hb(B) is bounded and fi
τ0→ 0, then Tfi → 0 in

Hb(B).
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We denote by τ0 the compact-open topology.

Lemma

Let T : Hb(B) → Hb(B) be a continuous linear operator such
that it is also (τ0, τ0)-continuous. Consider:

(i) T : Hb(B) → Hb(B) is Montel.

(ii) If (fi) ⊂ Hb(B) is bounded and fi
τ0→ 0, then Tfi → 0 in

Hb(B).
Then (i) implies (ii). If, moreover, every compact set in H(B) is
sequentially compact, then (ii) implies (i).
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Is every compact set in H(B) sequentially compact?
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Is every compact set in H(B) sequentially compact?
YES, when X is a separable Banach space.
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Is every compact set in H(B) sequentially compact?
YES, when X is a separable Banach space.
Under other (technical) conditions (Cascales, Orihuela).
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Is every compact set in H(B) sequentially compact?
YES, when X is a separable Banach space.
Under other (technical) conditions (Cascales, Orihuela).
In general it is not true:

Example

It is known that Bℓ′∞ (the closed unit ball of ℓ′∞) is not
sequentially σ(ℓ′∞, ℓ∞)-compact. We deduce that there are
compact sets in H(Bℓ∞) that are not sequentially compact.
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We consider now the evaluation functional δx : Hb(B) → C. It
also belongs to Hb(B)′.
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We consider now the evaluation functional δx : Hb(B) → C. It
also belongs to Hb(B)′.

Proposition

Assume Cψ,ϕ : Hb(B) → Hb(B) is continuous. Let 0 < r < 1
and denote

Ar := {ψ(x)δϕ(x) : ‖x‖ ≤ r}.
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We consider now the evaluation functional δx : Hb(B) → C. It
also belongs to Hb(B)′.

Proposition

Assume Cψ,ϕ : Hb(B) → Hb(B) is continuous. Let 0 < r < 1
and denote

Ar := {ψ(x)δϕ(x) : ‖x‖ ≤ r}.

If Cψ,ϕ is (reflexive) Montel, then for each 0 < r < 1 the set
Ar is (weakly) relatively compact in Hb(B)′.
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We consider now the evaluation functional δx : Hb(B) → C. It
also belongs to Hb(B)′.

Proposition

Assume Cψ,ϕ : Hb(B) → Hb(B) is continuous. Let 0 < r < 1
and denote

Ar := {ψ(x)δϕ(x) : ‖x‖ ≤ r}.

If Cψ,ϕ is (reflexive) Montel, then for each 0 < r < 1 the set
Ar is (weakly) relatively compact in Hb(B)′.

Conversely, if Ar is relatively compact in Hb(B)′ for each
0 < r < 1, then Cψ,ϕ is Montel.
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We consider now the evaluation functional δx : Hb(B) → C. It
also belongs to Hb(B)′.

Proposition

Assume Cψ,ϕ : Hb(B) → Hb(B) is continuous. Let 0 < r < 1
and denote

Ar := {ψ(x)δϕ(x) : ‖x‖ ≤ r}.

If Cψ,ϕ is (reflexive) Montel, then for each 0 < r < 1 the set
Ar is (weakly) relatively compact in Hb(B)′.

Conversely, if Ar is relatively compact in Hb(B)′ for each
0 < r < 1, then Cψ,ϕ is Montel.

Corollary

If Cψ,ϕ : Hb(B) → Hb(B) is (reflexive) Montel, then the set
(ψ · ϕ)(rB) is (weakly) relatively compact in X for every
0 < r < 1.
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Theorem

Let ψ and ϕ be holomorphic of bounded type. We have:
Cψ,ϕ : Hb(B) → Hb(B) is Montel if and only if (ψ · ϕ)(rB) is
relatively compact in X for every 0 < r < 1;
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Theorem

Let ψ and ϕ be holomorphic of bounded type. We have:
Cψ,ϕ : Hb(B) → Hb(B) is Montel if and only if (ψ · ϕ)(rB) is
relatively compact in X for every 0 < r < 1;
If Cψ,ϕ : Hb(B) → Hb(B) is reflexive, then (ψ · ϕ)(rB) is
weakly relatively compact in X for every 0 < r < 1.
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Theorem

Let ψ and ϕ be holomorphic of bounded type. We have:
Cψ,ϕ : Hb(B) → Hb(B) is Montel if and only if (ψ · ϕ)(rB) is
relatively compact in X for every 0 < r < 1;
If Cψ,ϕ : Hb(B) → Hb(B) is reflexive, then (ψ · ϕ)(rB) is
weakly relatively compact in X for every 0 < r < 1.
Moreover, if X has the Schur property and (ψ · ϕ)(rB) is
weakly relatively compact in X, then Cψ,ϕ : Hb(B) → Hb(B)
is reflexive.
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Theorem 1
Let ψ and ϕ be of bounded type. T.F.A.E.:

(i) Cψ,ϕ : Hb(B) → Hb(B) is compact;
(ii) The following two conditions hold:

(a) (ψ · ϕ)(rB) is relatively compact in X for every 0 < r < 1.
(b) There is 0 < s < 1 such that ϕ(B) ⊆ sB.
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Theorem 1
Let ψ and ϕ be of bounded type. T.F.A.E.:

(i) Cψ,ϕ : Hb(B) → Hb(B) is compact;
(ii) The following two conditions hold:

(a) (ψ · ϕ)(rB) is relatively compact in X for every 0 < r < 1.
(b) There is 0 < s < 1 such that ϕ(B) ⊆ sB.

Theorem 2
Let ψ and ϕ be holomorphic of bounded type:

(i) Cψ,ϕ : Hb(B) → Hb(B) is weakly compact;
(ii) The following two conditions hold:

(a) (ψ · ϕ)(rB) is weakly relatively compact in X for every
0 < r < 1.

(b) There is 0 < s < 1 such that ϕ(B) ⊆ sB.
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Theorem 1
Let ψ and ϕ be of bounded type. T.F.A.E.:

(i) Cψ,ϕ : Hb(B) → Hb(B) is compact;
(ii) The following two conditions hold:

(a) (ψ · ϕ)(rB) is relatively compact in X for every 0 < r < 1.
(b) There is 0 < s < 1 such that ϕ(B) ⊆ sB.

Theorem 2
Let ψ and ϕ be holomorphic of bounded type:

(i) Cψ,ϕ : Hb(B) → Hb(B) is weakly compact;
(ii) The following two conditions hold:

(a) (ψ · ϕ)(rB) is weakly relatively compact in X for every
0 < r < 1.

(b) There is 0 < s < 1 such that ϕ(B) ⊆ sB.

Then (i) ⇒ (ii) and, if X has the Schur property, (ii) ⇒ (i).
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Corollary

Let ϕ be holomorphic. Then, Cϕ : Hb(B) → Hb(B) is compact if
and only if there is 0 < s < 1 such that ϕ(B) ⊆ sB and for each
0 < r < 1 the set ϕ(rB) is relatively compact in X.
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Corollary

Let ϕ be holomorphic. Then, Cϕ : Hb(B) → Hb(B) is compact if
and only if there is 0 < s < 1 such that ϕ(B) ⊆ sB and for each
0 < r < 1 the set ϕ(rB) is relatively compact in X.

Open problem

We do not know if there is Cψ,ϕ : Hb(B) → Hb(B) Montel
(compact) so that Cϕ : Hb(B) → Hb(B) is not Montel (compact).
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However, we can see that this is not the case when ϕ is
holomorphic of bounded type and open.
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However, we can see that this is not the case when ϕ is
holomorphic of bounded type and open.

Proposition

Let ψ ∈ Hb(B) and ϕ : B → B be holomorphic of bounded type
and open. If Cψ,ϕ : Hb(B) → Hb(B) is Montel then X is finite
dimensional. Consequently, Cϕ : Hb(B) → Hb(B) is also
Montel.
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Examples

Example

Let ϕ : D → D and ψ ∈ H∞(D) defined by

ϕ(z) =
1 + z

2
and ψ(z) = 1 − z.

Then Cψ,ϕ : H∞(D) → H∞(D) is compact, but
Cϕ = C1,ϕ : H∞(D) → H∞(D) is not compact.
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Examples

Example

Let ϕ : D → D and ψ ∈ H∞(D) defined by

ϕ(z) =
1 + z

2
and ψ(z) = 1 − z.

Then Cψ,ϕ : H∞(D) → H∞(D) is compact, but
Cϕ = C1,ϕ : H∞(D) → H∞(D) is not compact.

Example
Assume that X is a Banach space of infinite dimension.
Consider ϕ : B → B defined by ϕ(x) = 1

2x .
The operator Cϕ : H∞(B) → H∞(B) is continuous but it is
not compact, therefore it is bounded but it is not Montel.
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Examples

Example

Let ϕ : D → D and ψ ∈ H∞(D) defined by

ϕ(z) =
1 + z

2
and ψ(z) = 1 − z.

Then Cψ,ϕ : H∞(D) → H∞(D) is compact, but
Cϕ = C1,ϕ : H∞(D) → H∞(D) is not compact.

Example
Assume that X is a Banach space of infinite dimension.
Consider ϕ : B → B defined by ϕ(x) = 1

2x .
The operator Cϕ : H∞(B) → H∞(B) is continuous but it is
not compact, therefore it is bounded but it is not Montel.
The operator Cϕ : Hb(B) → Hb(B) is bounded but it is not
Montel.
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Examples

Example

Let ϕ : Bc0 → Bc0 defined by

ϕ(x) =
1
2
(xn

n ) .

Then the composition operator Cϕ is compact in Hb(Bc0), but it
is not compact in H∞(Bc0).
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Examples

Example

Let ϕ : Bc0 → Bc0 defined by

ϕ(x) =
1
2
(xn

n ) .

Then the composition operator Cϕ is compact in Hb(Bc0), but it
is not compact in H∞(Bc0).

Example

Let ϕ : Bc0 → Bc0 defined by ϕ(x) = (xn
n ). The composition

operator Cϕ : Hb(Bc0) → Hb(Bc0) is Montel, but not bounded
and hence, not compact either.
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