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AIM
Let X be a complex Banach space, and B its open unit ball.

We study when a weighted composition operator Cy, , is

@ compact in the space of all bounded analytic functions
H*>(B),
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AIM
Let X be a complex Banach space, and B its open unit ball.

We study when a weighted composition operator Cy, , is

@ compact in the space of all bounded analytic functions
H*>(B),

@ bounded, reflexive, Montel and (weakly) compact in the
space of analytic functions of bounded type Hp(B).

in terms of the properties of the symbol ¢ and weight ).
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Let U be an open subset of the complex Banach space X.
@ A mapping f: U — C is holomorphic if
a) fis continuous in U.
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Let U be an open subset of the complex Banach space X.
@ A mapping f: U — C is holomorphic if
a) fis continuous in U.
b) for each x € U and y € X the complex function

A= f(X+Ay)

is holomorphic on the open set {\ € C: x + Ay € U}.
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Let U be an open subset of the complex Banach space X.
@ A mapping f: U — C is holomorphic if
a) fis continuous in U.
b) for each x € U and y € X the complex function

A= f(X+Ay)

is holomorphic on the open set {\ € C: x + Ay € U}.
@ Let Y be another Banach space. A mapping f: U — Y'is
holomorphic if for each u € Y’ the complex function uo f is
holomorphic.
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Definion |
Let U be an open subset of the complex Banach space X.
@ A mapping f: U — C is holomorphic if
a) fis continuous in U.
b) for each x € U and y € X the complex function
A= f(X+Ay)

is holomorphic on the open set {\ € C: x + Ay € U}.

@ Let Y be another Banach space. A mapping f: U — Y'is
holomorphic if for each u € Y’ the complex function uo f is

holomorphic.

Definition

If U= B we denote H(B) for the space of holomorphic
functions f : B — C, endowed with the compact-open topology,
denoted by 7.
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B unit ball of X

@ A mapping f: B — C is called of bounded type if f(rB) is
bounded forevery 0 < r < 1.
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B unit ball of X

@ A mapping f: B — C is called of bounded type if f(rB) is
bounded forevery 0 < r < 1.

@ A mapping ¢: B — B is called of bounded type if
VO<r<1 30<s<1: ¢(rB)C sB.
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Definton ...
B unit ball of X

@ A mapping f: B — C is called of bounded type if f(rB) is
bounded forevery 0 < r < 1.

@ A mapping ¢: B — B is called of bounded type if
VO<r<1 30<s<1: ¢(rB)C sB.

Definition
@ Hp(B) the subspace of H(B) of functions of bounded type,
which is Fréchet with the system of seminorms

lfl|; := sup |f(x)|, where0 < r<1.
lIxli<r

David Jornet Compact WCO in Spaces of Holomorphic functions



B unit ball of X

@ A mapping f: B — C is called of bounded type if f(rB) is
bounded forevery 0 < r < 1.

@ A mapping ¢: B — B is called of bounded type if
VO<r<1 30<s<1: ¢(rB)C sB.

Definition
@ Hp(B) the subspace of H(B) of functions of bounded type,
which is Fréchet with the system of seminorms

lfl|; := sup |f(x)|, where0 < r<1.
lIxli<r

@ H°°(B) the subspace of H(B) of bounded functions on B,
which is Banach with the norm

[lloo == sup [f(x)], fe H*(B).

flx]|<1
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Definition
If »: B— C and ¢: B — B are holomorphic, the operator

Cyp,:HB) = H(B), f=-(foyp)

is well-defined and is called weighted composition operator. ¢
is called symbol, and v is called weight.
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Definition
If »: B— C and ¢: B — B are holomorphic, the operator

Cyp,:HB) = H(B), f=-(foyp)

is well-defined and is called weighted composition operator. ¢
is called symbol, and v is called weight.

@ Compactness of (weighted) composition operators defined
on spaces of functions of one variable has been
extensively studied (we mention works by different authors
like Bonet, Contreras, Cowen, Diaz-Madrigal, Domanski,
Galindo, Hernandez-Diaz, Lindstrém, MacCluer, Shapiro,
Wikman...)
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(Definition |

If »: B— C and ¢: B — B are holomorphic, the operator

Cyp,:HB) = H(B), f=-(foyp)

is well-defined and is called weighted composition operator. ¢
is called symbol, and v is called weight.

@ Compactness of (weighted) composition operators defined
on spaces of functions of one variable has been
extensively studied (we mention works by different authors
like Bonet, Contreras, Cowen, Diaz-Madrigal, Domanski,
Galindo, Hernandez-Diaz, Lindstrém, MacCluer, Shapiro,
Wikman...)

@ In spaces of holomorphic functions on infinite dimensional

spaces the literature is much more scarce. Compactness

of the composition operator C,, defined on H>(B) was
studied by Aron, Galindo and Lindstrém, and on Hy(B) by

Galindo, Lourenco and Moraes.
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Continuity

Assume ¢, v are holomorphic and ) is non-zero.

@ Cy ,: Hp(B) — Hp(B) is continuous if and only if 1) and ¢
are of bounded type.
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Continuity

Assume ¢, v are holomorphic and ) is non-zero.

@ Cy ,: Hp(B) — Hp(B) is continuous if and only if 1) and ¢
are of bounded type.

@ Cy . : H*(B) — H>(B) is continuous if and only if
1 € H*(B).
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Compactness on H*(B)

We consider the point evaluation functional éx: H>*(B) — C on
H>(B), defined as dx(f) = f(x) for x € B. It belongs to the dual
space H>*(B)’ and, moreover, ||0x||y~g)y = 1 for every x € B.
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Compactness on H*(B)

We consider the point evaluation functional éx: H>*(B) — C on
H>(B), defined as dx(f) = f(x) for x € B. It belongs to the dual
space H>*(B)’ and, moreover, ||0x||y~g)y = 1 for every x € B.

The operator Cy, ,: H*(B) — H>(B) is compact if and only if

{2/)(X)5¢(X) X e B}

is relatively compact in H*(B)'.
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Compactness on H*(B)

We consider the point evaluation functional éx: H>*(B) — C on
H>(B), defined as dx(f) = f(x) for x € B. It belongs to the dual
space H>*(B)’ and, moreover, ||0x||y~g)y = 1 for every x € B.

The operator Cy, ,: H*(B) — H>(B) is compact if and only if

{1/)(X)5¢(X) X e B}

is relatively compact in H*(B)'.

Let Cy ,: H*(B) — H>*(B) be compact. Then (v - ¢)(B) is
relatively compact in X.
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Compactness on H*(B)

We extend for the infinite-dimensional case a result of
Contreras and Diaz-Madrigal (which treated the case B = D).

Lety € H*(B) and ¢: B — B be holomorphic. Then the
following conditions are equivalent:

Q@ Cy: H®(B) — H>*(B) is compact,
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Compactness on H*(B)

We extend for the infinite-dimensional case a result of
Contreras and Diaz-Madrigal (which treated the case B = D).

Lety € H*(B) and ¢: B — B be holomorphic. Then the
following conditions are equivalent:
Q Cy: H*(B) = H>*(B) is compact,
Q Cy,: H®(B) — H>(B) is weakly compact and (v - ¢)(B) is
relatively compact in X,
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Compactness on H*(B)

We extend for the infinite-dimensional case a result of
Contreras and Diaz-Madrigal (which treated the case B = D).

Lety € H*(B) and ¢: B — B be holomorphic. Then the
following conditions are equivalent:
Q@ Cy: H®(B) — H>*(B) is compact,
Q@ Cy,: H*®(B) — H>(B) is weakly compact and (v - ©)(B) is
relatively compact in X,
Q (v - ¢)(B) is relatively compact in X and one of the following
properties hold:
@ Thereis0O<s<1 such that p(B) C sB,
@ lim sup [p(x)| =

=17 ()l >r
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Sketch of proof

@ a) = b) is automatic from the last proposition.
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Sketch of proof

@ a) = b) is automatic from the last proposition.

@ b) = c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindstrém for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.
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Sketch of proof

@ a) = b) is automatic from the last proposition.

@ b) = c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindstrém for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.

@ c) = a) assume that Cy ., is not compact. Then there is a
sequence (fn)n C H*(B) with ||fy]|x < 1 and ¢ > 0 with

19 (Fro ) =4 - (fm o @)lloo > €,

for every n < m.
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Sketch of proof

@ a) = b) is automatic from the last proposition.

@ b) = c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindstrém for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.

@ c) = a) assume that Cy ., is not compact. Then there is a
sequence (fn)n C H*(B) with ||fy]|x < 1 and ¢ > 0 with

19 (Fro ) =4 - (fm o @)lloo > €,
for every n < m. We can select a set {x,m: n < m} C B:
[V (Xn,m) fn(0(Xn,m)) — Y (Xn,m) fm(0(Xn,m))| > €, for n < m.

Then the set (¢(Xxn,m))n<m is not relatively compact in B.
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Sketch of proof

@ a) = b) is automatic from the last proposition.

@ b) = c) we proceed in a similar way to the corresponding
result by Aron, Galindo and Lindstrém for composition
operators assuming that neither (i) nor (ii) hold and
proceed by contradiction.

@ c) = a) assume that Cy ., is not compact. Then there is a
sequence (fn)n C H*(B) with ||fy]|x < 1 and ¢ > 0 with

19 (Fro ) =4 - (fm o @)lloo > €,
for every n < m. We can select a set {x,m: n < m} C B:
[V (Xn,m) fn(0(Xn,m)) — Y (Xn,m) fm(0(Xn,m))| > €, for n < m.

Then the set (¢(Xxn,m))n<m is not relatively compact in B.
Now, using the following technical lemma gives a
contradiction with the fact that (f,) is bounded in H>(B).
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Sketch of proof Il

Lemma
Let ¢ € H*(B), ¥ # 0, and ¢ : B — B be holomorphic.
Assume (¢ - ¢)(B) is relatively compact in X and that one of the
following holds:
(i) Thereis 0 < s < 1 such that ¢(B) C sB.
(i) lim sup [|¢P(x)| =0.
=17 Jlp(x)lI>r

Then, for each sequence (x,) such that (¢(x,)) is not relatively
compact in B, there is a subsequence (xp, ) such that

Jim [120xn,)| = 0.
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Case of Hy(B)

Let E, F be locally convex Hausdorff spacesand T : E — F a
continuous linear operator. We say that:

@ T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T(U) is bounded (relatively
compact, weakly relatively compact) in F.
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Case of Hy(B)

Let E, F be locally convex Hausdorff spacesand T : E — F a
continuous linear operator. We say that:

@ T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T(U) is bounded (relatively
compact, weakly relatively compact) in F.

@ T is Montel (reflexive) if it maps bounded sets into
relatively compact (weakly relatively compact) sets in F.
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Case of Hy(B)

Let E, F be locally convex Hausdorff spacesand T : E — F a
continuous linear operator. We say that:

@ T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T(U) is bounded (relatively
compact, weakly relatively compact) in F.

@ T is Montel (reflexive) if it maps bounded sets into
relatively compact (weakly relatively compact) sets in F.

Let E be a quasinormable Fréchet space. If T : E — E is a
bounded linear operator which is also Montel (reflexive), then T
is compact (weakly compact).
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Case of Hy(B)

Let E, F be locally convex Hausdorff spacesand T : E — F a
continuous linear operator. We say that:

@ T is bounded (compact, weakly compact) if there is a
0-neighborhood U such that T(U) is bounded (relatively
compact, weakly relatively compact) in F.

@ T is Montel (reflexive) if it maps bounded sets into
relatively compact (weakly relatively compact) sets in F.

Let E be a quasinormable Fréchet space. If T : E — E is a
bounded linear operator which is also Montel (reflexive), then T
is compact (weakly compact).

The space Hy(B) is quasinormable (Ansemil, Ponte).
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Bounded operators and compact operators

Let ¢ : B — B be holomorphic. The following are equivalent:
@ thereis 0 < s < 1 such that o(B) C sB;
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Bounded operators and compact operators

Let ¢ : B — B be holomorphic. The following are equivalent:
@ thereis0 < s < 1 such that o(B) C sB;
@ C, : Hy(B) — Hp(B) is bounded;
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Bounded operators and compact operators

Let ¢ : B — B be holomorphic. The following are equivalent:

@ thereis0 < s < 1 such that o(B) C sB;

@ C, : Hy(B) — Hp(B) is bounded;

© Cy.,, : Hy(B) — Hp(B) is bounded for some v € Hy(B),
Y #0;
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Bounded operators and compact operators

Let ¢ : B — B be holomorphic. The following are equivalent:

@ thereis0 < s < 1 such that o(B) C sB;

@ C, : Hy(B) — Hp(B) is bounded;

© Cy.,, : Hy(B) — Hp(B) is bounded for some v € Hy(B),
Y #0;

Q Cy, : Hp(B) — Hp(B) is bounded for every i) € Hp(B).
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Corollary

Let By be the open unit ball of CN with some norm. Let
v : By — By be holomorphic. The following are equivalent:

@ thereis 0 < s < 1 such that o(By) C sBy;
@ C, : H(By) — H(By) is compact;
Q C,., : H(Bn) — H(Bn) is compact for some
¢ € H(BN)a ¢ 7£ 0;
Q Cy,, : H(Bn) — H(Bn) is compact for every i € H(By).
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Corollary

Let By be the open unit ball of CN with some norm. Let
v : By — By be holomorphic. The following are equivalent:

@ thereis 0 < s < 1 such that o(By) C sBy;
@ C, : H(By) — H(By) is compact;
Q C,., : H(Bn) — H(Bn) is compact for some
¢ € H(BN)v (U 7é 0;
Q Cy,, : H(Bn) — H(Bn) is compact for every i € H(By).

Now, using the previous Proposition:

Corollary

Let0 # ¢ € Hp(B) and ¢ : B — B be holomorphic. Then
Cy,, : Ho(B) — Hp(B) is compact if and only if

@ C,,, is Montel, and

© Thereis0 < s < 1 such that ¢(B) C sB.
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We denote by 7y the compact-open topology.

Lemma

Let T : Hy(B) — Hp(B) be a continuous linear operator such
that it is also (1, 19)-continuous. Consider:

(i) T: Hp(B) — Hy(B) is Montel.

(i) If (f;) C Hp(B) is bounded and f; 3 0, then Tf;, — 0 in
Hp(B).
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We denote by 7y the compact-open topology.

Lemma

Let T : Hy(B) — Hp(B) be a continuous linear operator such
that it is also (1, 19)-continuous. Consider:

(i) T : Hp(B) — Hp(B) is Montel.
(i) If (f;) C Hp(B) is bounded and f; 3 0, then Tf;, — 0 in
Hy(B).
Then (i) implies (ii). If, moreover, every compact set in H(B) is
sequentially compact, then (ii) implies (i).
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Is every compact set in H(B) sequentially compact?
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Is every compact set in H(B) sequentially compact?
@ YES, when X is a separable Banach space.
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Is every compact set in H(B) sequentially compact?
@ YES, when X is a separable Banach space.
@ Under other (technical) conditions (Cascales, Orihuela).

David Jornet Compact WCO in Spaces of Holomorphic functions



Is every compact set in H(B) sequentially compact?
@ YES, when X is a separable Banach space.
@ Under other (technical) conditions (Cascales, Orihuela).
@ In general it is not true:

It is known that B,,_ (the closed unit ball of /) is not
sequentially o (¢, /~)-compact. We deduce that there are
compact sets in H(B,_,) that are not sequentially compact.
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We consider now the evaluation functional 6x: Hp(B) — C. It
also belongs to Hy(B)'.
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We consider now the evaluation functional 6x: Hp(B) — C. It
also belongs to Hy(B)'.

Proposition

Assume Cy , : Hp(B) — Hp(B) is continuous. Let0 < r < 1
and denote

Ar = {(X)0p0x) = X[ < 1
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We consider now the evaluation functional 6x: Hp(B) — C. It
also belongs to Hy(B)'.

Proposition

Assume Cy , : Hp(B) — Hp(B) is continuous. Let0 < r < 1
and denote

Ar = {(X)0p0x) = X[ < 1

e If Cy,, is (reflexive) Montel, then for each 0 < r < 1 the set
A; is (weakly) relatively compact in Hp(B)'.
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We consider now the evaluation functional 6x: Hp(B) — C. It
also belongs to Hy(B)'.

Proposition

Assume Cy , : Hp(B) — Hp(B) is continuous. Let0 < r < 1
and denote

Ar = {(X)0p0x) = X[ < 1

e If Cy,, is (reflexive) Montel, then for each 0 < r < 1 the set
A; is (weakly) relatively compact in Hp(B)'.

@ Conversely, if A, is relatively compact in Hy(B)' for each
0 <r<1,thenCy, is Montel.
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We consider now the evaluation functional 6x: Hp(B) — C. It
also belongs to Hy(B)'.

Proposition

Assume Cy , : Hp(B) — Hp(B) is continuous. Let0 < r < 1
and denote

Ar = {(X)0p0x) = X[ < 1

e If Cy,, is (reflexive) Montel, then for each 0 < r < 1 the set
A; is (weakly) relatively compact in Hp(B)'.

@ Conversely, if A, is relatively compact in Hy(B)' for each
0 <r<1,thenCy, is Montel.

Corollary

If Cy ., : Hp(B) — Hp(B) is (reflexive) Montel, then the set
(v - p)(rB) is (weakly) relatively compact in X for every
O0<r<1.
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Let and ¢ be holomorphic of bounded type. We have:
Q@ Cy., : Hy(B) — Hp(B) is Montel if and only if (¢ - ©)(rB) is
relatively compact in X foreveryQ < r < 1;
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Let and ¢ be holomorphic of bounded type. We have:
Q@ Cy., : Hy(B) — Hp(B) is Montel if and only if (¢ - ©)(rB) is
relatively compact in X foreveryQ < r < 1;
Q@ IfCy,, : Hy(B) — Hp(B) is reflexive, then (¢ - ©)(rB) is
weakly relatively compact in X forevery 0 < r < 1.
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Let ) and ¢ be holomorphic of bounded type. We have:

Q@ Cy., : Hy(B) — Hp(B) is Montel if and only if (¢ - ©)(rB) is
relatively compact in X foreveryQ < r < 1;

Q@ IfCy,, : Hy(B) — Hp(B) is reflexive, then (¢ - ©)(rB) is
weakly relatively compact in X forevery 0 < r < 1.
Moreover, if X has the Schur property and (¢ - ¢)(rB) is
weakly relatively compact in X, then Cy, , : Hy(B) — Hp(B)
is reflexive.
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Let ¢ and ¢ be of bounded type. T.FA.E.:
(i) Cyp : Hp(B) — Hp(B) is compact;
(if) The following two conditions hold:

(@) (¢ - p)(rB)is relatively compact in X for every 0 < r < 1.
(b) Thereis 0 < s < 1 such that o(B) C sB.
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Let ¢ and ¢ be of bounded type. T.FA.E.:
(i) Cyp : Hp(B) — Hp(B) is compact;
(if) The following two conditions hold:

(@) (¢ - p)(rB)is relatively compact in X for every 0 < r < 1.
(b) Thereis 0 < s < 1 such that o(B) C sB.

Theorem 2
Let ¢» and ¢ be holomorphic of bounded type:

(i) Cy,p : Hp(B) — Hp(B) is weakly compact;
(i) The following two conditions hold:

(@) (v - p)(rB) is weakly relatively compact in X for every
O0<r<1.
(b) Thereis 0 < s < 1 such that ¢(B) C sB.
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R

Let ¢ and ¢ be of bounded type. T.FA.E.:
(i) Cyp : Hp(B) — Hp(B) is compact;
(if) The following two conditions hold:

(@) (¢ - p)(rB)is relatively compact in X for every 0 < r < 1.
(b) Thereis 0 < s < 1 such that o(B) C sB.

Theorem 2

Let ¢» and ¢ be holomorphic of bounded type:
(i) Cy,p : Hp(B) — Hp(B) is weakly compact;
(if) The following two conditions hold:

(@) (v - p)(rB) is weakly relatively compact in X for every
O0<r<1.
(b) Thereis 0 < s < 1 such that ¢(B) C sB.

Then (i) = (ii) and, if X has the Schur property, (ii) = (i).
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Let ¢ be holomorphic. Then, C, : Hp(B) — Hp(B) is compact if
and only if there is 0 < s < 1 such that o(B) C sB and for each
0 < r < 1 the set ¢(rB) is relatively compact in X.
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Corollary

Let ¢ be holomorphic. Then, C, : Hp(B) — Hp(B) is compact if
and only if there is 0 < s < 1 such that o(B) C sB and for each
0 < r < 1 the set ¢(rB) is relatively compact in X.

| A\

Open problem

We do not know if there is Cy,, : Hp(B) — Hp(B) Montel
(compact) so that C,, : Hp(B) — Hp(B) is not Montel (compact)

v
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However, we can see that this is not the case when ¢ is
holomorphic of bounded type and open.
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However, we can see that this is not the case when ¢ is
holomorphic of bounded type and open.

Proposition

Lety € Hp(B) and ¢ : B — B be holomorphic of bounded type
and open. If Cy, , : Hp(B) — Hp(B) is Montel then X is finite
dimensional. Consequently, C, : Hy(B) — Hp(B) is also
Montel.
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Examples

Let ¢ : D — D and ¢ € H>*(DD) defined by

o(2) = 1 erz and ¢Y(z)=1-z

Then Cy , : H>*(D) — H>*(ID) is compact, but
C, = Gy, : H*(D) — H>*(D) is not compact.
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Examples
Eampe

Let ¢ : D — D and ¢ € H>*(DD) defined by

o(z) = 1 erz and ¢(z)=1-2z

Then Cy, : H>*(D) — H>(ID) is compact, but
C, = Gy, : H*(D) — H>*(D) is not compact.

Bampe

Assume that X is a Banach space of infinite dimension.
Consider ¢ : B — B defined by ¢(x) = 1x.

@ The operator C,, : H*(B) — H>(B) is continuous but it is
not compact, therefore it is bounded but it is not Montel.
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Examples
Eampe

Let ¢ : D — D and ¢ € H>*(DD) defined by

o(2) = 1 erz and ¢Y(z)=1-z

Then Cy, : H>*(D) — H>(ID) is compact, but
C, = Gy, : H*(D) — H>*(D) is not compact.

Bampe

Assume that X is a Banach space of infinite dimension.
Consider ¢ : B — B defined by ¢(x) = 1x.
@ The operator C,, : H*(B) — H>(B) is continuous but it is
not compact, therefore it is bounded but it is not Montel.

@ The operator C,, : Hp(B) — Hp(B) is bounded but it is not
Montel.
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Examples

Example

Let ¢ : B, — B, defined by

o(x) = 3 (7).

Then the composition operator C,, is compact in Hy(Bg,), but it
is not compact in H*(Bg,).

David Jornet Compact WCO in Spaces of Holomorphic functions



Examples

Let ¢ : B, — B, defined by

olx) = 5 ().

Then the composition operator C,, is compact in Hy(Bg,), but it
is not compact in H*(Bg,).

Let ¢ : Bg, — Bg, defined by ¢(x) = (x/7). The composition
operator C,, : Hp(Bg,) — Hp(Bg,) is Montel, but not bounded
and hence, not compact either.
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