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Runge's Approximation Theorem
For Y C X C C open the following are equivalent.

i) For every g € £(Y), for every compact K C Y, and for every £ > 0 there is
f € A (X) such that

e >sup |f(z) —g(2)| = |f — gllo.x,
zeK

ie.r: H(X) = H(Y), f— fiy has dense range when JZ(Y') is equipped
with the topology of local uniform convergence.

i) X does not contain a compact connected component of C\Y.
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Lax-Malgrange Theorem: Precisely the same equivalence is true for R? instead of
C and holomorphic functions 52 (X) replaced by

&p(X) = {u € &X); P(D)u =0} :
where P € C[X1, ..., X4] is elliptic, D = —i(:2-, ..., 52).
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C and holomorphic functions 52 (X) replaced by
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where P € C[X1, ..., Xg] is elliptic, D = —i(52,..., 3%).
What about non-elliptic P?
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Runge's Approximation Theorem
For Y C X C C open the following are equivalent.

i) For every g € £(Y), for every compact K C Y, and for every £ > 0 there is
f € A (X) such that

0,K >

e > sup |f(z) — g(2)| =: |f — gl
zeK

ie.r: H(X) = H(Y), f— fiy has dense range when JZ(Y') is equipped
with the topology of local uniform convergence.
i) X does not contain a compact connected component of C\Y.

v

Lax-Malgrange Theorem: Precisely the same equivalence is true for R? instead of
C and holomorphic functions 52 (X) replaced by

&Ep(X) :i={ue &(X); P(D)u=0}=Zp(X) :={uec 2'(X); P(D)u=0}),
where P € C[X1, ..., Xg] is elliptic, D = —i(52,..., 3%).
What about non-elliptic P? We equip &p(X) and Z5(X) with their respective
standard topologies! For &p(X) this is the one generated by the seminorms

rK = ‘042022(61(|8O‘f(l‘)|7 f c gP(X)

Thomas Kalmes Quantitative Runge approximation 4/20

Vr € Ng, K C X compact : || f



P hypoelliptic <> ¥ X openVu € Z'(X): (P(D)u=0=u€ &(X))
~ Ep(X) = Pp(X) as locally convex spaces, thus: topology of &p(X) is
topology of local uniform convergence
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P hypoelliptic <> ¥ X openVu € Z'(X): (P(D)u=0=u€ &(X))
~ Ep(X) = Pp(X) as locally convex spaces, thus: topology of &p(X) is
topology of local uniform convergence

P(&) = X aj<m @al® elliptic 1= VE € RAN{0}: 0 # Pr(€) := 30 4= @al”
(Examples: P(&1,8) = £(& +i&) = P(D) = 05 P(§) = —|¢> = P(D) = A)
P elliptic = P hypoelliptic

P(§) = i€ + Y7, €2 is hypoelliptic but not elliptic; P(D) = 0, — A,
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P hypoelliptic :< ¥ X openVu € Z'(X) : (P(D)u=0=uc &(X))
~ Ep(X) = Pp(X) as locally convex spaces, thus: topology of &p(X) is
topology of local uniform convergence

P(€) = Y |ajm Gt elliptic 1 V& € RA{0} 0 # Pou(€) = 30y Gab®
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P elliptic = P hypoelliptic
P(&) =i& + 2?22 ¢ is hypoelliptic but not elliptic; P(D) = 8; — A,
First objective: Given Y C X C R? open, P non-elliptic. Find conditions for

re 1 Ep(X) = Ep(Y), f = fiv,

resp. for
ror: Dp(X) = Zp(Y), [ = fiy

to have dense range.
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P hypoelliptic :< ¥ X openVu € Z'(X) : (P(D)u=0=uc &(X))
~ Ep(X) = Pp(X) as locally convex spaces, thus: topology of &p(X) is
topology of local uniform convergence

P(€) = Y |ajm Gt elliptic 1 V& € RA{0} 0 # Pou(€) = 30y Gab®
(Examples: P(&1,&) = 5(& +1i&) = P(D) = 05; P(§) = —|¢]* = P(D) = A)
P elliptic = P hypoelliptic
P(&) =i& + 2?22 £ is hypoelliptic but not elliptic; P(D) = 9; — A,
First objective: Given Y C X C R? open, P non-elliptic. Find conditions for

re 1 Ep(X) = Ep(Y), f = fiv,

resp. for
rgr: Ip(X) = Zp(Y), f = fiy
to have dense range.
P non-elliptic = 3¢ € RA\{0} : P,,(£) =0 (:& £ is characteristic for P)
P, is homogeneous (of degree m) = w.l.o.g. || = 1 and by an orthogonal

change of variables £ = ¢; = (1,0,...,0).
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Runge type theorems for certain non-elliptic partial differential
operators
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For P we define P(¢) := P(—¢) (= P(€) = (—1)"Pn(£)). Moreover, let
H:={zeR% 0= (= (z,e1))}
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For P we define P(¢) := P(—¢) (= P, (&) = (=1)™ P (£)). Moreover, let

H:={z e R 0 =21 (= (z,e1))}
Theorem [4]

Let P be s.th. e; is characteristic for P. Assume that the following is true:

Ve>03ve &R : [—/2,¢/2] x R4™! Csuppw C [—¢,¢] x R4,
v real analytic in (—¢/2,/2) x R%~1
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For P we define P(¢) := P(—¢) (= P, (&) = (=1)™ P (£)). Moreover, let
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Let P be s.th. e; is characteristic for P. Assume that the following is true:
Ve>03ve &R : [—/2,¢/2] x R4™! Csuppw C [—¢,¢] x R4,
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Assume Y C X are s.th. Z5,(Y) = rg/(Zp(X)). Then thereis no z € R s.th. X
contains a compact connected component of (R)\Y) N (z + H).
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Let P be s.th. e; is characteristic for P. Assume that the following is true:
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Assume Y C X are s.th. Z5,(Y) = rg/(Zp(X)). Then thereis no z € R s.th. X
contains a compact connected component of (R)\Y) N (z + H).

Sketch of proof: Assume 32°(€ C)) : X contains co.co.co. C of (RN\Y)N(2° + H);

Ri-1, O H let x € 2(R4™1) with suppx C U
suppv(- — 2°)
U
T
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For P we define P(¢) := P(—¢) (= P, (&) = (=1)™ P (£)). Moreover, let
H:={z €eR% 0 =21 (=(z,e1))}
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Sketch of proof: Assume 32°(€ C)) : X contains co.co.co. C of (RN\Y)N(2° + H);
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For P we define P(¢) := P(—¢) (= P, (&) = (=1)™ P (£)). Moreover, let
H:={z €eR% 0 =21 (=(z,e1))}

Theorem [4]

Let P be s.th. e; is characteristic for P. Assume that the following is true:

Ve>03ve &R : [—/2,¢/2] x R4™! Csuppw C [—¢,¢] x R4,
v real analytic in (—£/2,¢/2) x R4~!

Assume Y C X are s.th. Z5,(Y) = rg/(Zp(X)). Then thereis no z € R s.th. X
contains a compact connected component of (R)\Y) N (z + H).

Sketch of proof: Assume 32°(€ C)) : X contains co.co.co. C of (RN\Y)N(2° + H);
O H let x € Z2(R471) with suppx C U

Rdfl A -
x = 1 in a neighborhood of V C U
v Supp o o(x) == v(x — 2%)x(22,. .., z4) satisfies
CCsuppp C o) —cal +e]|xUCX
supp P(D)e C (suppv + 2°) N (R x supp dy)
T C Y
Vu € Ip(X) : (ro(u), P(D)p) = (u, P(D)p) = (P(D)u,p) = 0 but
Jve Dp(Y): (v,P(D)p) # 0 which gives a contradiction ©

Thomas Kalmes Quantitative Runge approximation 7/20



P be of degree m s.th. P, (eq) # 0, eg = (0,...,0,1)
~ P(ﬁ) = ZQJ'(§1’ ce 7§d—1)§§
§=0

for suitable Q; € C[&1, ..., &q—1]; deg(Q;) < m — j and @, constant, non-zero
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P be of degree m s.th. P, (eq) # O,med =(0,...,0,1)

w P(E) =) Qi1 €a-1)&]
for suitable Q; € C[¢1, ..., &a—1]; djéfg(sz) <m — j and @,, constant, non-zero
Theorem [4]

Let P(¢) = Z;.":O Q;(&, ... ,§d_1)§£ be of degree m s.th. ey is characteristic for
P but e4 is not. Assume that degg, (Q;) <m —j, 0<j <m—1. Then,

Ve>03ve &R : [—/2,6/2] x R4™! Csuppw C [—¢,¢] x R4,
v real analytic in (—¢/2,¢/2) x R71.
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Let P(§) = Z;.":O Q;(&, ... ,§d_1)§£ be of degree m s.th. ey is characteristic for
P but e4 is not. Assume that degg, (Q;) <m —j, 0<j <m—1. Then,

Ve>03ve &R : [—/2,6/2] x R4™! Csuppw C [—¢,¢] x R4,
v real analytic in (—¢/2,¢/2) x R71.

Let W C R? be a subspace. We say that
o P acts along W := VE € RY: P(¢) = P(nwé) (mw orthogonal projection
onto W)
e P is elliptic along W :< P acts along W and V¢ € W\{0}: P, (§) #0
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o P acts along W := VE € RY: P(¢) = P(nwé) (mw orthogonal projection
onto W)
e P is elliptic along W :< P acts along W and V¢ € W\{0}: P,,,(§) #0
Let P be of degree m, elliptic along W = span{ey,...,eq},k > 1,
R e (C[Xl,. .. 7Xd,1],degR <m: P(f) = R(€17~ .. ,fdfl) +P(§k, R ,fd)
satisfies the above hypothesis.
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o P acts along W := VE € RY: P(¢) = P(nwé) (mw orthogonal projection
onto W)
e P is elliptic along W :< P acts along W and V¢ € W\{0}: P,,,(§) #0
Let P be of degree m, elliptic along W = span{ey,...,eq},k > 1,
R e (C[Xl,. .. 7Xd,1],degR <m: P(f) = R(€17~ .. ,fdfl) +P(§k, R ,fd)
satisfies the above hypothesis.
Concrete: P(D) =0y — A; P(D) = id; + Ay; P(D) = Y0 0;0; +7, aj €R.
8/20



Sufficient condition for

ep(Y) =re (p(X)) resp. Ip(Y) =19 (7p(X))?
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Sufficient condition for
Ep(¥) = 7 (G (X)) resp. Zh(Y) = Tor (Fp(XN)?
With Hahn-Banach: E locally convex space, F' C E subspace:
E=F&VYeE : (yr=0=¢=0);
here,

E = &p(Y) = kernel (P(D) : E(Y) — E(Y)), F = rs
resp. E = P(Y) = kernel (P(D) : Z'(Y) — 2'(Y)), F = g (Zp(X))
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E=F&VYeE : (yr=0=¢=0);
here,

E = &p(Y) = kernel (P(D) : E(Y) — E(Y)), F = 15 (p(X))
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Recall: G locally convex space, A € L(G) with transpose A : G’ — G':
(kernel A)' = G'JAL(G");
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Sufficient condition for
5p(¥V) = 75 (Bo (X)) resp. Fp(¥) = 77 (Fp(KN)?
With Hahn-Banach: E locally convex space, F' C E subspace:
E=F&VYeE : (yr=0=¢=0);
here,

E=6&p(Y)=kernel (P(D): £(Y) = &Y)), F = (é”p(X))
resp. E = 92p(Y) =kernel (P(D): 2'(Y) = 2'(Y)),F =rqg (Zp(X))

Recall: G locally convex space, A € L(G) with transpose A : G’ — G':
(kernel A)" = G'/AN(G");
here,
G=&Y), resp. G=2'(Y)=>G =&(Y), resp. G = 2(Y)
and A = P(D) (= A = P(D)) which implies

Ep(Y) = &'(Y)/P(D)(E'(Y)), resp. Zp(Y) = 2(Y)/P(D)(Z(Y));
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Sufficient condition for
5p(¥V) = 75 (Bo (X)) resp. Fp(¥) = 77 (Fp(KN)?
With Hahn-Banach: E locally convex space, F' C E subspace:
E=F&VYeE : (yr=0=¢=0);
here,

E=&p(Y) =kernel (P(D):&(Y) = &Y)),F =rg (Ep(X))
resp. E = 92p(Y) =kernel (P(D): 2'(Y) = 2'(Y)),F =rq (2p(X))

Recall: G locally convex space, A € L(G) with transpose A : G’ — G':
(kernel A)" = G'/AN(G");
here,
G=&Y), resp. G=2'(Y)=>G =&(Y), resp. G = 2(Y)
and A = P(D) (= A = P(D)) which implies

Ep(Y) = &'(Y)/P(D)(E'(Y)), resp. Zp(Y) = 2(Y)/P(D)(Z(Y));

having to deal with the closures is a problem!
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For P # 0, X C R? open, tfae (Floret: (i) < (ii))
(i) P(D)(2(X)) = P(D)(2(X)).

(i) P(D)(&'(X)) = P(D)(&'(X)).

(i) P(D): &(X) — &(X) is surjective.
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For P # 0, X C R? open, tfae (Floret: (i) < (i), Malgrange: (iii) < (iv))
(i) P(D)(Z2(X)) = P(D)(2(X)).

(i) P(D)(&"(X)) = P(D)(&'(X)).
(i) P(D): &(X) — &(X) is surjective.
(iv) X is P-convex for supports, i.e.

Vu € &(X) : dist(supp P(D)u, R\ X) = dist(supp u, R"\ X).

Quantitative Runge approximation
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For P # 0, X C R? open, tfae (Floret: (i) < (i), Malgrange: (iii) < (iv))
(i) P(D)(Z(X)) = P(D)(2(X)).

(i) P(D)(&'(X)) = P(D)(&"(X)).
(iii) P(D): &(X) — &(X) is surjective.
)

(iv) X is P-convex for supports, i.e.
Vu € &(X) : dist(supp P(D)u, R\ X) = dist(supp u, R"\ X).

If P is elliptic, every open X C R? is P-convex for supports.

Theorem [2]

Let P € C[Xy,...,X,] be elliptic along the subspace W, Y C X C R? be open,
X be P-convex for supports. Then, (i) = (ii), where

(i) Az € RY: X contains compact connected component of (R\Y) N (z + W).
(i) Ep(Y) = 75 (Gp(X)) and/or Do(Y) = ror (T (X)).
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Let P € C[Xy,...,X,] be elliptic along the subspace W, Y C X C R? be open,
X be P-convex for supports. Then, (i) = (ii), where

(i) Az € RY: X contains compact connected component of (R\Y) N (z + W).
(i) Ep(Y) =r1s (&p(X)) and/or Zp(Y) = rg (Zp(X)).
If d =2 (or W = R?) we also have (ii) = (4).

Thomas Kalmes Quantitative Runge approximation 10/20



Corollary [2]
Let P(D) = 8%25 = 5972, Y C X C R? be open, X be P-convex for supports.
Tfae:
(i) €p(Y) = rs (6p(X)) and/or Zp(Y) = 1o (Zp(X)).
(i) #z € R?: X contains co.co.co. of (RN\Y) N{(z1 +t,22 +1t); t € R} or of
(RNY) N{(z1 +t,z2 — t); t € R}.
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Corollary [2]
Let P(D) = 8%25 = 59?2, Y C X C R? be open, X be P-convex for supports.
Tfae:
(i) €p(Y) = rs (6p(X)) and/or Zp(Y) = 1o (Zp(X)).
(i) #z € R?: X contains co.co.co. of (RN\Y) N{(z1 +t, 22 +1t); t € R} or of
(RNY) N{(z1 +t,z2 — t); t € R}.

/"{(901 +t,x2 + 1)}
Y
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Theorem [4]

Let P € C[Xy,...,Xq4] be of degree m, {¢ € RY; P,,(€) = 0} = span{e; }.
Moreover, let Y € X C R% be open, X be P-convex for supports. Then,
(2) = (4), where

(i) Az € R?: X contains a co.co.co. of (RN\Y) N (z+ {£ € R%; (€, e1) = 0}).
(i) 8p(¥) = 75 @R (X)) and/or F(¥) = 7o (Fa(X).
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(2) = (4), where

(i) Az € R?: X contains a co.co.co. of (RN\Y) N (z+ {£ € R%; (€, e1) = 0}).
(i) 8p(¥) = 75 @R (X)) and/or F(¥) = 7o (Fa(X).

If P(§) = 3700 Qj(&r, -, &a—1)€) with dege, Q; <m —j,j=0,...,m—1, we
also have (ii) = ().

v
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Theorem [4]

Let P € C[Xy,...,Xq4] be of degree m, {¢ € RY; P,,(€) = 0} = span{e; }.
Moreover, let Y € X C R% be open, X be P-convex for supports. Then,
(2) = (4), where

(i) Az € R?: X contains a co.co.co. of (RN\Y) N (z+ {£ € R%; (€, e1) = 0}).

(i) Ep(Y) = re (6p(X)) and/or Tp(Y) = 1o (Zp(X)).

If P(¢) = Z;”:OQ?(gl,...,gd_l)gg with dege, @ <m—j,j=0,....m—1, we

also have (ii) = (7).

v

Applicable to P(D) = 0; — A, and P(D) =i0; + A,;
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Theorem [4]

Let P € C[Xy,...,Xq4] be of degree m, {¢ € RY; P,,(€) = 0} = span{e; }.
Moreover, let Y € X C R% be open, X be P-convex for supports. Then,
(2) = (4), where

(i) Az € R?: X contains a co.co.co. of (RN\Y) N (z+ {£ € R%; (€, e1) = 0}).
(i) &p(Y) =re (6p(X)) and/or Zp(Y) = ro (Zp(X)).

If P(¢) = Z;”:OQj(gl,...,gd_l)gg with dege, @ <m—j,j=0,....m—1, we
also have (ii) = (7).

v

Applicable to P(D) = 0; — A, and P(D) =i0; + A,;
in particular for

Y = (a1, B1) x G1 C (a2, B2) X Go = X; G; C R lopen, j =1,2:

Dense range iff G5 does not contain a co.co.co. of Rd_l\Gl.
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Quantitative Runge type approximation theorems J
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Riiland, Salo_(2019): Z C X C R? open, bounded Lipschitz domains such that
Z C X, X\Z connnected (= X does not contain bounded co.co. of R%\Z)

Let (ajk)1<jk<a € WH(X)?*4 be a real, symmetric matrix function,
¢ € L*>®(X) such that

d
Lu= Z . (aj10ju) + cu,u € H'(X)
k=1

is uniformly elliptic (+ some additional technical assumptions).
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Eijland, Saloﬁ(2019): Z C X CR open, bounded Lipschitz domains suchjhat
Z C X, X\Z connnected (= X does not contain bounded co.co. of R%\Z)

Let (ajk)1<jk<a € WH(X)?*4 be a real, symmetric matrix function,
¢ € L*>®(X) such that

d
Lu= Z . (aj10ju) + cu,u € H'(X)
k=1

is uniformly elliptic (+ some additional technical assgmptions).
Let Y be a bounded Lipschitz domain with Z C Y, Y C X. Then there are
C > 0,s > 1 such that

Vge H(Y),Lg=0inYVee (0,1)3f € H(X),Lf=0in X :
C
l9z = fizllc2z) < ellgllar oy and [l fioxllaizox) < Zllgy ez

(quantitative Runge type approximation)
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Eijland, Saloﬁ(2019): Z C X CR open, bounded Lipschitz domains suchjhat
Z C X, X\Z connnected (= X does not contain bounded co.co. of R%\Z)

Let (ajk)1<jk<a € WH(X)?*4 be a real, symmetric matrix function,
¢ € L*>®(X) such that

d
Lu= Z . (aj10ju) + cu,u € H'(X)
k=1

is uniformly elliptic (+ some additional technical assgmptions).
Let Y be a bounded Lipschitz domain with Z C Y, Y C X. Then there are
C > 0,s > 1 such that

Vge H(Y),Lg=0inYVee (0,1)3f € H(X),Lf=0in X :
C
l9z = fizllc2z) < ellgllar oy and [l fioxllaizox) < Zllgy ez
(quantitative Runge type approximation)

Second objective: Generalization in the context of constant coefficient partial
differential operators
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Recall the linear topological invariant (£2) of Vogt, Wagner:

A Fréchet space E (with increasing fundamental sequence (|| - ||ln)nen of
seminorms) satisfies (§2) iff

VEeNII>EkVm>13C>0,s>1

C
vee (0)VfeEIhe b [If —hlk<elfland [Allm < —lIfll
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seminorms) satisfies (§2) iff

VEeNII>kVm>13C>0,5>1
C
vee O)VfeE3he E: |If —hlw <elfllvand [|hllm < (I f]-

(Q) for &p(X) (K € X :& K C X compact):

VKeX,keNyILe X,KCLI>kVMeX,m>13C>0,5s>1
Vee (0,1)Vfe&p(X)Ihe Ep(X):

C
[f = Pllk.xe <ellflli,L and [|Bf[mar < €—s||f||l,L-
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C
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Assume &p(Y) = re(&p(X)), Ep(X) has () and that for K € Y one can
choose L € Y:
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Recall the linear topological invariant (£2) of Vogt, Wagner:

A Fréchet space E (with increasing fundamental sequence (|| - || )nen of
seminorms) satisfies (§2) iff

VEeNII>kVm>13C>0,5s>1

C
vee (0)VfeEIhe b [If —hlk<elfland [Allm < —lIfll

(Q) for &p(X) (K € X :& K C X compact):
VKeX,keNg3dLe X, KCLI>kYMeX,m>13C>0,s>1
Vee (0,1)Vfedsp(X)Ihe bp(X):

C
[f = Pllk.xe <ellflli,L and [|Bf[mar < E:||f||l,L~

Assume &p(Y) = re(&p(X)), Ep(X) has () and that for K € Y one can

choose L € Y: For g € &p(Y) choose f € &p(X) with [lg — flli.z < §llglli,z;:

evaluate () for ¢/4 to get h € &p(X) with

4°2C
68

lg = Rllx.rc < ellglls, and [[Allm ar < lgllz,z-
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Theorem [1], [3]
Let P € C[Xy,...,X4] and let X C R? be open and P-convex for supports.
Then, &p(X) has (£2) in each of the following cases.
(i) d=2.
(i) X convex (for hypoelliptic P this is due to Petzsche).
(ii) P is elliptic along a subspace W (for W = R this is due to Vogt).
)

(iv) {&€ € R% Py(€) = 0} = span{ei} and P is semi-elliptic; covers polynomials

like P(€) = i€} — P(&, ..., &q) with P elliptic of degree m > r and real
coefficients in its principal part; concrete P(D) = 0; —

Thomas Kalmes Quantitative Runge approximation
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Theorem [2]

Let P € C[Xy,..., X ] be elliptic along the subspace W. Let Y C X C R? be
open, X be P-convex for supports such that

#z € R : X contains a co.co.co. of (RA\Y)N(z + W).

Moreover, let int(K) = K € Y be such that

$2 € R?: X contains a bounded co.co. of (RI\K)N(z + W).

Then,

VLeY,Keint(L)VM € X3s>1Vk,meNy3IC >0Ve € (0,1)

C
Vg € 6p(Y)3h € Ep(X) : llg = hllkx < ellgllers,z and [Allm,ar < Zllgllesr,L.

v
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Theorem [2]

Let P € C[Xy,...,X4) be elliptic along the subspace W. Let Y C X C R? be
open, X be P-convex for supports such that

Bz € R?: X contains a co.co.co. of (RN\Y)N(z+ W).

Moreover, let int(K) = K € Y be such that

32 € R?: X contains a bounded co.co. of (R¥\K)N(z + WW).

Then,

VLeY,Keint(L)VM € X3s>1Vk,meNy3IC >0Ve € (0,1)

C
Vg € &p(Y)3h € Ep(X) : |lg — hllk,x < ellglle+1,L and [|Allm,ar < €—s||9||k+1,L-

v

Applicable to W = R? = P elliptic
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Theorem [2]

Let P € C[Xq,...,X4] be elliptic .Let Y C X CR% be
open such that

X contains no co.co.co. of (R\Y)

Moreover, let int(K) = K € Y be such that

X contains no bounded co.co. of (R%\ K)

Then,
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Theorem [2]

Let P € C[Xq,...,X4] be elliptic .Let Y C X CR% be
open such that

X contains no co.co.co. of (R\Y)

Moreover, let K € Y have continuous boundary such that

X contains no bounded co.co. of (R%\ K)

Then,
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C
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Theorem [2]

Let P € C[Xq,...,X4] be elliptic .Let Y C X CR% be
open

Moreover, let K € Y have continuous boundary such that

X contains no bounded co.co. of (R%\K)

Then,

VLEY,K €int(L)VM € X3s>1 3C >0Ve € (0,1)

C
Vg € 6p(Y)3h € Ep(X) : [lg — hllx < ellgllz and |IAllar < Zllgllz-

This generalizes Riiland, Salo; due to Petzsche in case of d = 2 and
P(D) = %(81 +i02)
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Corollary [2]
Let [t1,%2],[a,b] CR, 6 > 0. Then,

VM eR?3Is>1Vk,meNy3IC >0Ve € (0,1)
Vg e & ((t— bty +8) X (a—8,b+06)),02g — 929 = 03h € E(R?) -
7h — 02k =0in R?, [lg — Al ey ta]x[a,8] < ENGllkt1,ft1—5/2,t2+6/2)x [a—6/2,+5/2]

C
and ||A[m,n < 5_5||9||k+1,[t176/2,t2+6/2]><[a75/2,b+6/2]-
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Corollary [2]
Let [t1,%2],[a,b] CR, 6 > 0. Then,

VM e€R?*3s>1Vk,meNy3IC >0Ve € (0,1)
Vg€ &((t1 — 0tz +0) x (a—6,b+9)),02g —0%9g=03h € &R?):

Oh—2h=0inR? |lg — hllk ity ta]xad] < ENGIkt1,(tr—6/2,t0-+6/2]x [a—6 /2,046 /2]

C
and ||A[m,n < E_S||g||k+1,[t176/2,t2+6/2]><[a76/2,b+6/2]-

Theorem [2]

Let P € C[Xy,..., X4 1] be elliptic, of degree m, with real coefficients in its
principal part, r < m. Set P(§) = i} — P(&2,...,&q4). Moreover, let

(i) G CR?! open (iv) DCRI¥L TCRopen, DCG
(i) K € G, 0K continuous (v) L € D with K C int(L)
(iii) G contains no bounded co.co. of

Rd\K (Vi tl,tQGR,6>O, [t1—5,t2+5]g1

4
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Let P € C[Xy,..., X4 1] be elliptic, of degree m, with real coefficients in its
principal part, r < m. Set P(§) = i} — P(&2,...,&q4). Moreover, let

(i) G CR?! open (iv) DCRI¥L TCRopen, DCG
(i) K € G, 0K continuous (v) L € D with K C int(L)
(iii) G contains no bounded co.co. of

Rd\K (Vi tl,tQGR,6>O, [t1—5,t2+5]g1

Then, VM @R xG3Is>1,C >0Vgeép(I xD),e>03hedép(RxG):

lg = Pllies oy < ellgles—seavo1xn and allar < gl —s,a+o1x2-
O




For r > 0 set B(0,7) = {x € R% |z| < r} and B[0,7] = {x € R%;|z| < r}

Theorem [2]

Let P € C[X1,...,X4)\{0} and r1,73,0 > 0 with 71 + § < r9. Then, for every
r3 > ro there is s > 1 such that for every k, m € Ny there is C' > 0 such that

Vg € Ep(B(0,72)),¢ € (0,1)Fh € Ep(RY) : llg = hlli, 510,11 < €llgllis1, 50,1+

C
and ||l B10,rs] < = 19llk+1,B(0,r1 +6-

_65
v
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