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Context

Definition: Skew-product of an operator

A compact metric space X complex separable Fréchet space
f : A → A continuous T : X → X continuous and linear operator
h : A → C continuous

P : A × X → A × X
(a , x) 7→ (f (a),h(a)Tx)

Additionally
1 µ is a probability measure on (A,A) (µ : A → R+, µ(A) = 1)
2 f is ergodic with respect ot µ on (A,A)

f is µ-invariant (µ(f−1(Γ)) = µ(Γ) for all Γ ∈ A)
If f−1(Γ) = Γ, Γ ∈ A then µ(Γ) ∈ {0,1}

3 µ has full support (µ(U) > 0 for all U open and non-empty)
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Aim
To study dynamical properties like transitivity, mixing and chaos in the
sense of Devaney for skew-products of operators, in particular for
skew-products of differential operators on H(C)

Recall that an endomorphism f on a topological space
is topologically transitive if for any U,V non-empty open sets

∃n ∈ N s.t. f n(U) ∩ V ̸= ∅

is topologically mixing if for any U,V non-empty open sets

∃N ∈ N s.t. f n(U) ∩ V ̸= ∅ ∀n ≥ N

is chaotic in the sense of Devaney if it is topological transitive and
it admits a dense set of periodic points
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Previous works and motivation

Bayart-Costakis-Hadjiloucas (2+3 (2008), 1+2+3 (2010))
Provide sufficient conditions for transitivity of skew-products of
operators defined on Banach spaces
Study transitivity of skew-products of unilateral weighted backward
shifts on ℓp

Study transitivity of skew-products of composition operators on
H2(D) associated to ϕ ∈ Aut(D)
For Fréchet spaces they proved that skew-products of translations
and the differentiation operators on H(C) are transitive

Godefroy-Shapiro (1991)

Suppose that T : H(C) → H(C), T ̸= λI, is an operator that commutes
with the differentiation operator D, that is, T ◦ D = D ◦ T . Then T is
mixing and chaotic (H(C) with topology of uniform convergence on
compact sets).
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Theorem
Let A be a compact metric space, f : A → A a continuous map, µ an
ergodic probability measure on A for f giving non-zero measure to
every non-empty open set and h : A → C a continuous function.
Let T : H(C) → H(C), T ̸= λI, be an operator that commutes with the
differentiation operator D.

Suppose that γ :=

∫
A

log |h|dµ is finite and consider the skew-product

P : A × H(C) → A × H(C)
(a ,u) 7−→ (f (a),h(a)Tu)

i) P is transitive
ii) P is chaotic if f is chaotic and |h| > 0
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Tools
Commutant of D (Godefroy-Shapiro)

If T commutes with D then T = φ(D) where φ(z) is an entire function of exponential
type. If φ(z) =

∑
n≥0 anzn, then for λ ∈ C we have

T exp(λz) =
∑
n≥0

anDn exp(λz) =
∑
n≥0

anλ
n exp(λz) = φ(λ) exp(λz)

Birkhoff Ergodic Theorem

For every ϕ ∈ L1(µ) and for µ-almost every a ∈ A we have

1
N

N−1∑
n=0

ϕ(f na)
N→∞

−−−−−−→
∫

A
ϕdµ

Density of exponentials on H(C)

Let Λ ⊂ C be a set with an accumulation point. Then the set

span{exp(λz) : λ ∈ Λ}

is dense in H(C).
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Notation

Iterations of P

P(a,u) = (f (a),h(a)Tu)

P2(a,u) = P(f (a),h(a)Tu) = (f 2(a),h(f (a))h(a)T 2u)

Pn(a,u) = (f n(a),hn(a)T nu), where hn(a) := h(f n−1(a)) . . . h(f (a))h(a)

The base and the fibre of a skew-product
For a ∈ A (the base),
we have a sequence of operators (Ta,n) (the fibre) given by

Ta,n : H(C) → H(C), Ta,n := hn(a)T n, n ≥ 1

Orb(P, (a,u)) = {Pn(a,u) : n ≥ 0}
= {(f n(a),Ta,n(u)) : n ≥ 0}
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Sketch of proof (transitivity of P)
a, c ∈ A, ε > 0, U,V open ̸= ∅ ⇒ B(a, ε)× U and B(c, ε)× V
GOAL!
Find (b, u) ∈ B(a, ε)× U such that Pn(b, u) ∈ B(c, ε)× V for some n ∈ N
That is, f n(b) ∈ B(c, ε) and Tb,n(u) = hn(b)T nu ∈ V , but
Tb,n(u) = hn(b)T nu = hn(b)φ(D)nu = hn(b)(

∑
k≥0 ak Dk )nu

Take b ∈ A1 ∩ A2 ∩ B(a, ε)

A1 :=

b ∈ A :
1
n

n−1∑
j=0

χB(c,ε)(f
j(b))

n→∞
−−−−−−→ µ(B(c, ε))


A2 :=

b ∈ A :
1
n

n−1∑
j=0

log
∣∣∣h(f j(b))

∣∣∣ n→∞
−−−−−−→

∫
A
log |h|dµ


b ∈ A2 means δ > 0, ∃N such that if n ≥ N∣∣∣∣∣∣1

n

n−1∑
j=0

log
∣∣∣h(f j(b))

∣∣∣− γ

∣∣∣∣∣∣ < δ

exp (n(γ − δ)) < |hn(b)| < exp (n(γ + δ))

Recall that T n exp(λz) = φ(λ)n exp(λz)
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The sets
span{exp (λz) : |φ(λ)| < exp (−γ)}
span{exp (λz) : |φ(λ)| > exp (−γ)} are dense in H(C)

u ∈ U ∩ span{exp (λz) : |φ(λ)| < exp (−γ)}
u =

∑m
k=1 ak exp (λkz) : |φ(λk )| < exp (−γ), ∀k

v ∈ V ∩ span{exp (λz) : |φ(λ)| > exp (−γ)}
v =

∑m
k=1 bk exp (µkz) : |φ(µk )| > exp (−γ),∀k

Define un =
m∑

k=1

bk
1

hn(b)φ(µk )n exp (µkz), n ≥ 1

1 un
n→∞
−−−→ 0 2 Tb,nun = v for all n ≥ 1

Take the sequence (u + un)n
1 u + un ∈ U for n >>

2 Tb,nu
n→∞
−−−→ 0

3 Tb,n(u + un) = Tb,nu + Tb,nun = Tb,nu + v ∈ V for n >>

Therefore (Tb,n)n is transitive (even mixing!)
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Observe also that (f n(b))n must meet B(c, ε) since b ∈ A1. Recall that

A1 :=

b ∈ A :
1
n

n−1∑
j=0

χB(c,ε)(f j(b))
n→∞

−−−−−→ µ(B(c, ε))


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Sketch of proof (P is chaotic if f is chaotic)
Take a ∈ A n-periodic for f
Pn(a,u) = (f n(a),hn(a)T nu) = (a,hn(a)T nu)
Pnk (a,u) = (a,hn(a)k T nk u), k ≥ 1

If u = exp(λz) we have
Pnk (a, exp(λz)) = (a, (hn(a)φ(λ)n)k exp(λz)), k ≥ 1

Idea: take enough exponentials satisfying (hn(a)φ(λ)n)k = 1

Since |h| > 0 we have hn(a) ̸= 0. Suppose hn(a) ∈ R (if not rotate!).
Take Λ := {|hn(a)|−1/n exp(απi), α ∈ Q}
All vectors in span{exp(λz) : φ(λ) ∈ Λ} are periodic for (Ta,n)n≥0 and
the set is dense in H(C)
The following is a dense set of periodic points for P⋃

a f -periodic

{(a,u) : u ∈ span{exp(λz) : φ(λ) ∈ Λ}}

Note that a single periodic point of f will suffice for the fibre (Ta,n)n≥0 to have a dense
set of periodic points (for example a single fixed point)
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Toplogical dynamics approach with no ergodicity

Theorem
Let A be a compact metric space, f : A → A a continuous map and
h : A → C a continuous function with |h| > 0.
Let T : H(C) → H(C), T ̸= λI, be an operator that commutes with the
differentiation operator D.
Consider the skew-product

P : A × X → A × X
(a , x) 7→ (f (a),h(a)Tx)

i) P is transitive if f is transitive
ii) P is chaotic if f is chaotic
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