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4Main notions

▶ A germ of holomorphic foliation of codimension one on (Cn,0) is defined
by a holomorphic 1-form ω, verifying the Frobenius integrability condition
ω ∧ dω = 0. We shall assume that ω =

∑n
i=1 ai(x)dxi, where the

coefficients ai(x) have no common factors

▶ We will be interested in the sequel only in the 2-dimensional case, so we
don’t care about the integrability condition.

▶ In dimension two, alternatively a foliation may be defined by a vector field,
dual to the 1-form. If ω = a(x, y)dx+ b(x, y)dy, a vector field defining
the foliation is b(x, y) ∂

∂x
− a(x, y) ∂

∂y
.

▶ We are interested in the analytic classification of these germs. Two
foliations, defined by 1-forms ω1, ω2, are analytically equivalent if there
exists a biholomorphism Φ : (C2,0) → (C2,0) such that Φ∗ω1 ∧ ω2 = 0.

▶ If an invertible formal transformation Φ̂ = (Φ1,Φ2) ∈ C[[x, y]]2 exists such
that Φ∗ω1 ∧ ω2 = 0, the foliations are said to be formally equivalent.
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5Formal vs. Analytic

▶ Two germs of analytically equivalent foliations are formally equivalent.

▶ The converse is not true.

Example

Consider Euler’s foliation

ω = x2dy + (y − x)dx.

The formal change of variables Φ∗(x, y) = (x, y +
∑∞

n=0(−1)nn!xn+1) verifies
that Φ∗ω = x2dy + ydx. These 1-forms are not analytically equivalent.
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6Singularities

▶ If all coefficients of a form ω vanish simultaneously at some point, this
point is called a singularity.

▶ The only singularity of ω = x2dy + (y − x)dx is (0, 0).

▶ The singular locus has codimension 2, so we can assume that singularities
are isolated.

▶ If the origin is non singular, the foliation is analytically equivalent to dx
(Frobenius Theorem).

▶ We shall assume that the origin is a singular point.
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7Separatrices

▶ One of the main notions associated with a singularity are the separatrices.

▶ A germ of analytic curve C through the origin, with equation f = 0 is a
separatrix if, for every point x0 ∈ C \ {0}, the tangent space to C agrees
with the tangent space defined by ω.

▶ Analytically, f is a separatrix of ω if and only if there exists a 2-form η
such that ω ∧ df = fη. Equivalently if there are germs of functions g, k
and a 1-form η such that

gω = kdf + fη,

and moreover k ̸≡ 0 on C.
▶ Previous expressions allow to extend this notion to the formal case.

▶ A two-dimensional foliation always has at least one analytic separatrix
(Camacho-Sad Theorem). It may have finitely or infinitely many of them.
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8Examples

Example

▶ The foliation defined by ω = x2dy + (y − x)dx has one analytic separatrix
(x = 0) and a formal one.

▶ The only separatrix of ω = d(y2 + x3) +A(x, y)(2xdy − 3ydx), with
A(x, y) a non-unit, is y2 + x3. Indeed,

ω ∧ d(y2 + x3) = −6A(x, y)(y2 + x3)dx ∧ dy.

▶ As
(2xdy − 3ydx) ∧ d(y2 + cx3) = −6(y2 + cx3)dx ∧ dy,

every curve y2 + cx3 is a separatrix for 2xdy − 3ydx.

▶ The situation where infinitely many separatrices appear, in dimension 2, is
called dicritical.
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9Reduction of Singularities

▶ Using techniques coming from algebraic geometry, singularities may be
reduced to simple ones by blowing-up the origin finitely many times.

▶ After this process, only simple singularities appear, of one of the following
types. Let us describe them.

▶ Consider the foliation defined by a vector field X = a(x, y) ∂
∂x

+ b(x, y) ∂
∂y

,
and let M be the matrix of its linear part, i.e.

M =

(
∂a
∂x

(0, 0) ∂a
∂y

(0, 0)
∂b
∂x

(0, 0) ∂b
∂y

(0, 0)

)
.

If λ1, λ2 are the eigenvalues of M , the singularity is called simple if
λ2 ̸= 0, λ1/λ2 /∈ Q>0.

▶ When λ1 = 0, the singularity is called a saddle-node. In the other case, it
will be called hyperbolic.
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10An example

As an example, let us show how the reduction of singularities works in a simple
case: ω = d(y2 − x3).

 

Figure: Reduction of the singularities of a cusp



Jorge Mozo Fernández — Nilpotent singularities

11

1. Holomorphic foliations. Base notions
1.1 Basic definitions
1.2 Singularities and separatrices

2. Nilpotent singularities
2.1 Generalities
2.2 Analytic Classification. Generalized Poincaré-Dulac singularities
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12Nilpotent singularities

▶ We will be interested in the singularities with nilpotent (non zero) linear
part.

▶ According to Takens, these singularities have a normal form

ω = d(y2 + xn) + xpU(x)dy,

with U(x) a unit.

▶ There are different cases to study, according with the trichotomy 2p > n
(generalized cusp), 2p = n, or 2p < n (Generalized saddle-node).

▶ In this talk we will introduce two problems. The first one concerns the
analytic classification in the case 2p = n. The second one concerns a
family of foliations of generalized saddle-node type.
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13Generalized Poincaré-Dulac singularities

▶ The problem of analytic classification aims to give criteria in order to
decide when two formally equivalent singularities of foliations are, in fact,
analytically equivalent.

▶ For nilpotent foliations, this problem has been treated by different authors,
as R. Moussu, D. Cerveau, R. Meziani, M. Berthier, P. Sad, E. Stróżyna,
. . .

▶ There is a remaining case: when n = 2p and a Poincaré-Dulac singularity
appears after reduction. After p blow-ups, we have the following situation.

_} 

/1>?7{--�-��
S{

�� 

H�rsb u��1a-

Figure: Reduction of the singularities of a generalized Poincaré Dulac singularity. First
steps
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▶ There is a remaining case: when n = 2p and a Poincaré-Dulac singularity
appears after reduction. After p blow-ups, we have the following situation.

_} 

/1>?7{--�-��
S{

�� 

H�rsb u��1a-

Figure: Reduction of the singularities of a generalized Poincaré Dulac singularity. First
steps
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14Analytic Classification Theorem

Theorem (P. Fernández, –)

Let F1, F2 be two germs of generalized Poincaré-Dulac holomorphic foliations,
formally equivalent. Assume that Hi is the holonomy group of the pth
component of the exceptional divisor obtained when doing the reduction of
singularities for Fi (i = 1, 2). If H1, H2 are analytically conjugated, the
foliations are also analytically conjugated.
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15Rigidity

▶ A foliation F is called rigid if every germ of foliation, formally equivalent
to F is, indeed, analytically equivalent.

▶ Rigidity is a phenomenon which appears sometimes in presence of a rich
holonomy (monodromy, group of invariants of the leaves) group.

▶ Denote H the projective holonomy group of a generalized Poincaré-Dulac
singularity, i.e., the holonomy group of the pth component of the
exceptional divisor obtained when doing the reduction of singularities for
F .

▶ This group has two generators, h1, h2. They are the local generators of
the holonomy of a Poincaré-Dulac singularity and of a hyperbolic
singularity, respectively.

▶ Due to the normal form of the Poincaré-Dulac singularity, it can be proved
that there exists an analytic vector field Y such that

h1 = µ exp(Y), h2 =
λ

µ
exp(−Y),

where µm = 1, λp = 1.
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that there exists an analytic vector field Y such that

h1 = µ exp(Y), h2 =
λ

µ
exp(−Y),

where µm = 1, λp = 1.



Jorge Mozo Fernández — Nilpotent singularities

15Rigidity

▶ A foliation F is called rigid if every germ of foliation, formally equivalent
to F is, indeed, analytically equivalent.

▶ Rigidity is a phenomenon which appears sometimes in presence of a rich
holonomy (monodromy, group of invariants of the leaves) group.

▶ Denote H the projective holonomy group of a generalized Poincaré-Dulac
singularity, i.e., the holonomy group of the pth component of the
exceptional divisor obtained when doing the reduction of singularities for
F .

▶ This group has two generators, h1, h2. They are the local generators of
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that there exists an analytic vector field Y such that

h1 = µ exp(Y), h2 =
λ

µ
exp(−Y),

where µm = 1, λp = 1.



Jorge Mozo Fernández — Nilpotent singularities

16Projective holonomy group

▶ As a consequence of previous results, the holonomy group is rigid, so
generalized Poincaré-Dulac singularities are rigid.

▶ If H would be solvable, it would be formally equivalent to a subgroup of{
a · exp

(
txm+1 · ∂

∂x

)
| t ∈ C, a ∈ C∗

}
,

which is not possible, after a close study of the group.
▶ As a consequence, the projective holonomy group turns out to be:

▶ Abelian, if p divides m.
▶ Non solvable, if p does not divide m.
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17Projective foliations with only one singular point

▶ A global foliation in the projective plane P2
C is defined by a 1-form

A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz,

where A, B and C are homogeneous polynomials of degree d, satisfying
the Euler relation xA+ yB + zC = 0. Alternatively, vector fields can be
used to define them.

▶ It is known that the set of projective foliations not having algebraic
invariant curves contains an open and dense set in the space of all
foliations. Nevertheless, it is difficult to find concrete examples.

▶ It is well known that the sum of the Milnor numbers at every singularity
must always be d2 + d+1. For different reasons, families of foliations with
only one singular point, of maximal Milnor number, are of special interest.

▶ Such a family of foliations, assuming non-zero linear part, is given by the
following vector field [A]:

X = αyd ∂

∂x
+
(
βx

d−1
2 yz

d−1
2 − β2zd

) ∂

∂y
+
(
xd−1y − βx

d−1
2 z

d+1
2

) ∂

∂z
,

(1)
for odd d.
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18Projective foliations with only one singular point

▶ The study of the leaves of projective foliations may help to understand
deeper problems. It is known that the previous family of foliations does
not have algebraic invariant curves.

▶ Around the only singular point, in local coordinates, this foliation may be
written as

(y − βz
d+1
2 − αydz)dy + (αyd+1 − βyz

d−1
2 + β2zd)dz.

The singularity at the origin is a generalized saddle-node, known to have an
analytic separatrix and a (possibly) formal one, both smooth and tangent.

▶ Typically, it is very hard to know, in precise examples, if the formal
separatrices are, in fact, divergent or not, even while divergence is generic.

▶ To study the local behaviour of the separatrices, several authors have
introduced different invariants associated to them: indices.
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19Camacho-Sad indices

▶ If C is a separatrix of the foliation defined by the 1-form ω, and we write
gω = kdf + fη, it can be defined the Camacho-Sad index of C at P as

CSP (F , C) = − 1

2πi

∫
∂C

η

k
.

▶ In the particular (and important) case where C is smooth, y = 0 in
appropriate coordinates, and ω = yp(y, z)dz + q(y, z)dy, previous formula
reduces to

CSP (F , C) = −Res

(
p(0, z)

q(0, z)
; z = 0

)
.

▶ The important fact to retain is that this index is easy to compute for
reduced singularities and behaves well under reduction of singularities.
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20Gómez-Mont-Seade-Verjovsky indices

▶ Another invariant associated to a singularity is GSV index. In the smooth
case, and with previous notations is

GSVP (F , C) = ν(q(0, z)).

▶ It is an integer, which can also be computed (in the two-dimensional case)
as

dimC (O/(f,A,B)) ,

whenever ω = A(y, z)dy +B(y, z)dz [G].
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21Convergence of the weak separatrix

▶ The following relation holds between indices [FM]:

(d+ 2)2 = CSP (X , C) + 2GSVP (X , C), (2)

taking into account that in this family of examples, only one singularity
(P ) appears.

▶ Recall that GSV index is an integer. From (2) we deduce the following
result:

Theorem (Alcántara, C.R., –)

Any generalized saddle-node as in (1) has two separatrices through the origin.
In fact, the weak separatrix through the saddle-node Q1 which appears after
reduction of singularities, converges.

This is a quite unexpected result, as generally, weak separatrices diverge. In
this case the global structure of the foliation under study forces it to converge.
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