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Introduction



The Borel map

Definition

j∞0 : C∞(R)→ CN, f 7→ j∞0 (f ) := (f (n)(0))n∈N is called Borel
map.

Classical result

j∞0 is surjective, but (of course) not injective.

Problem

For given E ↪→ C∞(R) find (large) F such that F ⊆ j∞0 (E ).
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Ultradifferentiable classes



Classical ultradifferentiable classes

Denjoy–Carleman classes

Let M be a weight sequence, i.e. positive, log-convex,
Mj

Mj−1
→∞.

Set

‖f ‖MK ,r := sup
x∈K ,k∈N

|f (k)(x)|
rkMk

.

E(M)(R) :=
{
f ∈ C∞(R) : ∀K ⊂⊂ R ∀r > 0 : ‖f ‖MK ,r <∞

}
.

And the corresponding sequence space

Λ(M) :=
{
λ = (λk)k ∈ CN : ∀r > 0 : ‖λ‖Mr := sup

k∈N

|λk |
rkMk

<∞
}
.
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Braun–Meise–Taylor classes

Let ω : [0,∞)→ [0,∞) be a weight function, i.e. continuous and
increasing, and

log(t) = o(ω(t)) as t →∞,

φω(t) := ω(et) is convex,

ω(2t) = O(ω(t)) as t →∞.
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Available characterizations for ultradifferentiable classes

Definition

M ≺SV N :⇔ ∃C , s > 0 : sup
j≥1

sup
0≤i<j

( Mj

s jNi

) 1
j−i 1

j
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k=j

Nk−1

Nk
≤ C

Theorem (Schmets, Valdivia 2003)

Let M ≺ N be weight sequences with lim infp→∞
(
Mp

p!

)1/p
> 0.

Then
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Theorem (Bonet, Meise, Taylor 1992)

Let ω, σ be weight functions. Then

Λ(σ) ⊆ j∞0 (E(ω)(R))

⇔ κω(r) :=

∫ ∞
1

ω(rt)

t2
dt = O(σ(r)) as r →∞.



Goal: Parametrized versions for weight matrices

Definition (Weight matrix)

A weight matrix is a one-parameter family of weight sequences
M = (M(x))x>0 such that M(x) ≤ M(y) if x ≤ y , andM

(x)
j

j!

1/j

→∞ as j →∞.

E(M)(R) :=
{
f ∈ C∞(R) : ∀K ⊂⊂ R ∀r , x > 0 : ‖f ‖M(x)

K ,r <∞
}
,

and

Λ(M) :=
{
λ = (λk)k ∈ CN : ∀r , x > 0 : ‖λ‖M(x)

r <∞
}
.
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Relevant conditions

A weight matrix M = (M(x))x>0 is said to have moderate growth if

∀y > 0 ∃x > 0 : sup
j+k≥1

 M
(x)
j+k

M
(y)
j M

(y)
k

 1
j+k

<∞, (M(mg))

to be derivation closed if

∀y > 0 ∃x > 0 : sup
j∈N

M
(x)
j+1

M
(y)
j

 1
j+1

<∞, (M(dc))

and to be non-quasianalytic if

∀x > 0 :
∞∑
k=1

M
(x)
k−1

M
(x)
k

<∞. (M(nq))
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A parametrized Schmets-Valdivia characterization

Theorem (N., Rainer, Schindl 2022)

Let M,N be weight matrices that are ordered with respect to their
quotient sequences, i.e., µ(x) ≤ µ(y) and ν(x) ≤ ν(y) if x ≤ y.
Then

Λ(M) ⊆ j∞0 (E(N)(R)) ⇐⇒ ∀y > 0∃x > 0 : M(x) ≺SV N(y).

Proof Idea for (⇐)

For given λ ∈ Λ(M), there exist weight sequences R,S such that(
Rj

j!

)1/j
→∞ such that

λ ∈ Λ{R},

R ≺SV S ,

E{S}(R) ⊆ E(N)(R).

This yields reduction to the (single weight sequence) Roumieu case.
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A journey of (re)discovery and generalization



A parametrized Bonet–Meise–Taylor condition?

Definition

For a weight sequence M, we define the associated (pre-)weight
function

ωM(t) := sup
k∈N

log
( tk

Mk

)
.

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

Λ(M) ⊆ j∞0 (E(N)(R))

⇐⇒
∀y > 0∃x > 0 :

κω
N(y)

(r) =

∫ ∞
1

ωN(y)(rt)

t2
dt = O(ωM(x)(r)) as r →∞.

BUT: For that we need moderate growth of M and N.



A parametrized Bonet–Meise–Taylor condition?

Definition

For a weight sequence M, we define the associated (pre-)weight
function

ωM(t) := sup
k∈N

log
( tk

Mk

)
.

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

Λ(M) ⊆ j∞0 (E(N)(R))

⇐⇒
∀y > 0∃x > 0 :

κω
N(y)

(r) =

∫ ∞
1

ωN(y)(rt)

t2
dt = O(ωM(x)(r)) as r →∞.

BUT: For that we need moderate growth of M and N.



A parametrized Bonet–Meise–Taylor condition?

Definition

For a weight sequence M, we define the associated (pre-)weight
function

ωM(t) := sup
k∈N

log
( tk

Mk

)
.

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

Λ(M) ⊆ j∞0 (E(N)(R))

⇐⇒
∀y > 0∃x > 0 :

κω
N(y)

(r) =

∫ ∞
1

ωN(y)(rt)

t2
dt = O(ωM(x)(r)) as r →∞.

BUT: For that we need moderate growth of M and N.



A parametrized Bonet–Meise–Taylor condition?

Definition

For a weight sequence M, we define the associated (pre-)weight
function

ωM(t) := sup
k∈N

log
( tk

Mk

)
.

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

Λ(M) ⊆ j∞0 (E(N)(R))

⇐⇒
∀y > 0 ∃x > 0 :

κω
N(y)

(r) =

∫ ∞
1

ωN(y)(rt)

t2
dt = O(ωM(x)(r)) as r →∞.

BUT: For that we need moderate growth of M and N.



A parametrized Bonet–Meise–Taylor condition?

Definition

For a weight sequence M, we define the associated (pre-)weight
function

ωM(t) := sup
k∈N

log
( tk

Mk

)
.

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

Λ(M) ⊆ j∞0 (E(N)(R))

⇐⇒
∀y > 0 ∃x > 0 :

κω
N(y)

(r) =

∫ ∞
1

ωN(y)(rt)

t2
dt = O(ωM(x)(r)) as r →∞.

BUT: For that we need moderate growth of M and N.



A functional analytic result by Bonet, Meise, Taylor

E
T // F G

Roo

E ′ F ′
Rt
//T t

oo G ′

Proposition

Let E ,F ,G be Fréchet–Schwartz spaces and let T ∈ L(E ,F ) and
R ∈ L(G ,F ) have dense range. Assume that F ′ endowed with the
initial topology with respect to T t : F ′ → E ′ is bornological. Then
the following conditions are equivalent:

R(G ) ⊆ T (E ).

If B ⊆ F ′ is such that T t(B) is bounded in E ′, then Rt(B) is
bounded in G ′.
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...applied to the Borel map

E(N)(R)
j∞0 // Λ(N) Λ(M)incloo

E(N)(R)′ (Λ(N))′
(j∞0 )t
oo (incl)t // (Λ(M))′
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If B ⊆ (Λ(N))′ is such that (j∞0 )t(B) is bounded in E(N)(R)′,
then (incl)t(B) is bounded in (Λ(M))′.
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...and by computing the duals

Let M, N be weight matrices and let N be derivation closed. Then

E(N)(R)′
F∼= {f ∈ H(C) : ∃A, k : |f (z)| ≤ AeωN(1/k) (kz)+k|Im(z)|}
=: AΩ+

N

(Λ(M))′
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Proposition

Suppose AΩN
endowed with the trace topology w.r.t. AΩ+

N
is

bornological. Then the following conditions are equivalent:

(i) Λ(M) ⊆ j∞0 (E(N)(R)).

(ii) If B ⊆ AΩN
is such that B is bounded in AΩ+

N
, then B is

bounded in AΩM
.

(ii) reads as: Suppose that for all f ∈ B there exist constants Cf

and kf such that

|f (z)| ≤ Cf e
ω
N(1/kf ) (kf z)

,

and there are uniform constants C and k such that for all f ∈ B

|f (z)| ≤ CeωN(1/k) (kz)+k|Im(z)|.

Then one needs to be able to conclude the exitence of uniform
constants C̃ and k̃ such that for all f ∈ B

|f (z)| ≤ C̃ e
ω
M(1/k̃) (k̃z)

.
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A Phragmén Lindelöf Theorem

Let f ∈ H(C) and

sup|z|=r log |f (z)|
r

r→∞→ 0,

∫ ∞
−∞

max(0, log |f (t)|)
1 + t2

dt <∞. (1)

Then

log |f (z)| ≤ |y |
π

∫ ∞
−∞

log |f (t)|
(t − x)2 + y2

dt.

Corollary

Let f ∈ AΩN
(which implies (1)!), and assume f ∈ AΩ+

N
, i.e. there

exist C , k such that |f (z)| ≤ CeωN(1/k) (kz)+k|y |. Then

|f (z)| ≤ CePN(1/k) (kz).
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Observation

If there exists x ,C > 0 such that for all z ∈ C

PN(1/k)(kz) ≤ ωM(x)(Cz) + C ,

we are done!

Theorem (N., Rainer, Schindl 2022)

Suppose M and N are weight matrices, and assume that N is
derivation closed. Then the following conditions are equivalent:

Λ(M) ⊆ j∞0 (E(N)(R)),

For all y > 0, there exists C , x > 0 such that for all t > 0

PN(y)(it) ≤ ωM(x)(Ct) + C .

Rediscovery

Langenbruch showed in 1994 an unparametrized version,

Carleson showed in 1961 an unparametrized version (in
disguise).
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Special cases



Denjoy–Carleman classes

Theorem (N., Rainer, Schindl 2022)

Let M,N weight sequences, M ≤ CN, and N derivation closed,

with
(
Mk
k!

)1/k
→∞ and

(
Nk
k!

)1/k
→∞. Then the following are

equivalent:

Λ(M) ⊆ j∞0 (E(N)(R)).

Λ{M} ⊆ j∞0 (E{N}(R)).

There is C > 0 such that PN(it) ≤ ωM(Ct) + C for all t > 0.

M ≺SV N.

If M has moderate growth, then the conditions are also equivalent
to

There is C > 0 such that κN(t) = O(ωM(t)) as t →∞.

supj≥1
Mj

jMj−1

∑
k≥j

Nk
Nk−1

<∞.



Braun–Meise–Taylor classes

Theorem (N., Rainer, Schindl 2022)

Let ω, σ be weight functions satisfying ω(t) = o(t), σ(t) = o(t) as
t →∞ and let Ω = (W (x))x>0, Σ = (S (x))x>0 be the associated
weight matrices. Then the following conditions are equivalent:

Λ(σ) ⊆ j∞0 (E(ω)(R)).

Λ{σ} ⊆ j∞0 (E{ω}(R)).

κω(t) = O(σ(t)) as t →∞.

For all y > 0 there is x > 0 such that S (x) ≺SV W (y).

For all y > 0 there is x > 0 such that
PW (y)(it) ≤ ωS(x)(Ct) + C for all t > 0.

There are x , y > 0 such that κW (y)(t) = O(ωS(x)(t)) as
t →∞.



Outlook

Prove analogous statements for the jet mapping

j∞K : C∞(Rd)→ C (K )N
d
, f 7→ (f (α)|K )α∈Nd .

Find sharper results, i.e.

Λ(M) ( G ⊆ j∞0 (E(N)(R))

by investigating the diagram

E(N)(R)′

F
��

(Λ(N))′
(j∞0 )t
oo

S

��

inclt // G ′

��
AΩ+

N
AΩNincl

oo
?
// AG
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