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J§° : C®(R) — CN, > j§o(f) := (f(M(0))nen is called Borel
map.

Classical result

Jo° is surjective, but (of course) not injective.

For given E — C*°(R) find (large) F such that F C j§°(E).
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Classical ultradifferentiable classes

Denjoy—Carleman classes

Let M be a weight sequence, i.e. positive, log-convex, MM — 0.
Set

FR ()|
f Mr ‘= sup | .
H HK’ xEK,keN rk My

EM(R) .= {f € C*(R): YK CCRVr>0:|f|¥, < OO}-

And the corresponding sequence space

A
AM) . — {)\ =Mk €CYVr>0: MM .= iuly\)] r| d < oo}.
€
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Braun—Meise—Taylor classes

Let w : [0,00) — [0, 00) be a weight function, i.e. continuous and
increasing, and
o log(t) = o(w(t)) as t — o0,
@ ¢,(t) :=w(e?) is convex,
° w(2t) = O(w(t)) as t — oo.
Set
()]

fll%, = —
” HK,r Xei(l{IE)GN e¢;",(rk)/r’

where
¢ (x) :=sup{xy —du(y): y >0}, x>0.

EL(R) = {f € C®(R): VK CCRVr>0:|[f[%, < oo}.

A
AW = {)\ = M)k €CY 1 Vr>0: MY = igg e¢£(fk|)/r < oo}.
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Available characterizations for ultradifferentiable classes

M' i—i
M<sy N = 3C,s>0: sup sup (—J>’ §
Jj210<i<y

Theorem (Schmets, Valdivia 2003)

1/
Let M < N be weight sequences with liminf,_, <%) g > 0.
Then

AMY C jso(eMHR)) & M <sy N.



Theorem (Bonet, Meise, Taylor 1992)

Let w, o be weight functions. Then

A C j(E@)(R

)
& ky(r) = /loo “gf) dt = O(c(r)) as r — .
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Goal: Parametrized versions for weight matrices

Definition (Weight matrix)

A weight matrix is a one-parameter family of weight sequences
M = (I\/I(X))X>o such that M®) < MO if x < y, and

1/j

M)
J — 00 as j —» Q.

J!

EOM(RY = {f € C¥(R) : VK CCRVr,x>0: |[f|M < oo},
and

A {A — )k eCY v x>0 MY < oo}.
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Relevant conditions

A weight matrix 9 = (M), is said to have moderate growth if

1
M\ I
Vy >0dx >0: sup Jtk

_ ik ) o, m,
jHk>1 I\/IJ.(y)M,((Y) Hme)

to be derivation closed if

j+1
Vy >03x>0: ;ulg Mji(j/) < 00, (M(qc))
JE B
and to be non-quasianalytic if
0o pa(x)
Vx> 0: Z k;)l < oQ. (Zm(,,q))

x —~

k=1 M
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A parametrized Schmets-Valdivia characterization

Theorem (N., Rainer, Schindl 2022)

Let M, I be weight matrices that are ordered with respect to their
quotient sequences, I.e., u(x) < M(y) and v) < v if x <y.
Then

AP C j(EN(R)) <= Vy >03x>0: MK <5, N,

Proof Idea for (<)

For given A € A there exist weight sequences R, S such that

N\ 1/)
(T—{) ’ — 00 such that

e )\ e AR},
@ R<sy S,
o £H(R) C EM(R).

This yields reduction to the (single weight sequence) Roumieu case.



A journey of (re)discovery and generalization




A parametrized Bonet—Meise—Taylor condition?




A parametrized Bonet—Meise—Taylor condition?

For a weight sequence M, we define the associated (pre-)weight
function

tk

wm(t) == ilélglog (Vk>



A parametrized Bonet—Meise—Taylor condition?

Definition
For a weight sequence M, we define the associated (pre-)weight
function
tk
wp(t) := sup log (—)
) keN M

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read



A parametrized Bonet—Meise—Taylor condition?

Definition
For a weight sequence M, we define the associated (pre-)weight
function
tk
wp(t) := sup log (—)
) keN M

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

A C jge(EPV(R))
R
Vy >0dx >0:

* w ( )(rt)
Ky (1) :/1 Niizdt = O(wpy(r)) as r — oo.



A parametrized Bonet—Meise—Taylor condition?

Definition
For a weight sequence M, we define the associated (pre-)weight
function
tk
wp(t) := sup log (—)
) keN M

In analogy to the parametrized Schmets-Valdivia condition, a
characterization should read

A C jge(EPV(R))
R
Vy >0dx >0:

* w ( )(rt)
Ky (1) :/1 Niizdt = O(wpy(r)) as r — oo.

BUT: For that we need moderate growth of 9t and 1.
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A functional analytic result by Bonet, Meise, Taylor

T R

E—F<—G

t t
[ e

Proposition
Let E, F, G be Fréchet—Schwartz spaces and let T € L(E, F) and
R € L(G, F) have dense range. Assume that F' endowed with the
initial topology with respect to Tt : F' — E’ is bornological. Then
the following conditions are equivalent:

e R(G) C T(E).

o If BC F’ is such that T'(B) is bounded in E’, then R*(B) is

bounded in G'.
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...applied to the Borel map

£ (R) 2o A(OY Zincl_ p()

g(‘ﬂ)(R)’ ﬁ (/\(‘ﬂ))/ w; (/\(93?))'

Suppose (N endowed with the initial topology w.r.t. (js°)t is
bornological. Then the following conditions are equivalent:
o AP C j&=(£N(R)).
o If BC (AY s such that (j§°)!(B) is bounded in E™(RY,
then (incl)t(B) is bounded in (A’
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...and by computing the duals

Let M, I be weight matrices and let 9 be derivation closed. Then

F
EMRY 2 {f e H(C): TA k: |f(z)] < Ae¥nt/o(k2)Hkiim(z)]y

=. AQ;:[
S
(NY = (f e H(C): 3A k: |f(2)] < Ae“ntvn(k2)y
= AQQJ?
SO (RY Ug°) ACDY |nc|t A
(R) (APDY == (ADY

Aqyy
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Proposition
Suppose Aq,, endowed with the trace topology w.r.t. AQ«} is
bornological. Then the following conditions are equivalent:

(i) AP C jg>(EPI(R)).
(ii) If B C Aq,, is such that B is bounded in AQ;, then B is
bounded in Ag,, .

(ii) reads as: Suppose that for all f € B there exist constants C¢
and kf such that

IF(2)] < Cre“nt/inkr?),
and there are uniform constants C and k such that for all f € B
()] < Ce®n(1/i) (k2)+k[Im(z)]

Then one needs to be able to conclude the exitence of uniform
constants C and k such that for all f € B

I7(2)] < Ce“mri (),



A Phragmén Lindelof Theorem

Let f € #(C) and

=

dt .(1
r oo 1+t2 <0 ()

sup||= log [f(2)| ;o 0 /°° max(0, log |f(t)])

Then

log |f(2)] < M/ Mdt.
t—x +y



A Phragmén Lindelof Theorem

Let f € H(C) and

%
r o 1+ t2

sup||= log [f(2)| ;0o 5 /°° max(0, log |f(t)|) dt < 0. (1)

Then

Corollary

Let f € Aq,, (which implies (1)!), and assume f & AQ(;, i.e. there
exist C, k such that |f(z)| < Ce“nt/0(FKIYI Then

|y\ = 1/k>+ (yk” dt

< C

f(2)



A Phragmén Lindelof Theorem

Let f € #(C) and

=

sup|,—, log [f(2)] ,—oc . > max(0, log|f(t)|) dt < 0. (1)
r ) 1+ t2 ’

Then

IyI/ log |£(2)]
| f < —dt.
og|f(2)l (t —x)2+y?

Corollary

Let f € Aq,, (which implies (1)!), and assume f & AQ&, i.e. there
exist C, k such that |£(z)] < Ce“nu/0 (k&) Then

|f(z)| < CePnarnka),
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Observation
If there exists x, C > 0 such that for all z € C

Pnasw(kz) < wpyeo (Cz) + C,
we are done!

Theorem (N., Rainer, Schindl 2022)

Suppose M and N are weight matrices, and assume that N is
derivation closed. Then the following conditions are equivalent:

o A C jeo(PV(R)),
@ For all y > 0, there exists C,x > 0 such that for all t > 0

Rediscovery

@ Langenbruch showed in 1994 an unparametrized version,

@ Carleson showed in 1961 an unparametrized version (in
disguise).
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Denjoy—Carleman classes

Theorem (N., Rainer, Schindl 2022)

Let M, N weight sequences, M < CN, and N derivation closed,
1/k 1/k
with (Mk> — oo and (Nk> — 00. Then the following are

equivalent:
o AM C j=(M(R)).
o M} C jo(£(M)(R)).
@ There is C > 0 such that Py(it) < wp(Ct) + C for all t > 0.
o M <sy N.

If M has moderate growth, then the conditions are also equivalent
to

@ There is C > 0 such that ky(t) = O(wpm(t)) as t — oc.

M; Ny
® SUPj>1 7375 ks W < 0.




Braun—Meise—Taylor classes

Theorem (N., Rainer, Schindl 2022)

Let w,o be weight functions satisfying w(t) = o(t), o(t) = o(t) as
t — 0o and let Q = (WX)),s0, T = (S®)),=0 be the associated
weight matrices. Then the following conditions are equivalent:

o A C jo(E@)(R)).

o A} C jgo(et}(R)).

o ky(t) = O(o(t)) ast — oo.

e For all y > 0 there is x > 0 such that S®) <g, W),

@ For all y > 0 there is x > 0 such that
Py (it) < wsw (Ct) + C for all t > 0.

@ There are x,y > 0 such that k) (t) = O(wgx(t)) as
t — oo.
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@ Prove analogous statements for the jet mapping

& CRY) = C(KN, F o (F) g

@ Find sharper results, i.e.
A € G C jge(EM(R))

by investigating the diagram
g(m)(R) Ug°)* (A(m)), incl® G’

P

Ag
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