Global regularity in ultradifferentiable spaces for non hypoelliptic PDE

A. Oliaro

University of Torino, Italy

Workshop on Functional and Complex Analysis

Valladolid, 20 – 23 June 2022

< 回 > < 回 > < 回 > .

Definition

A linear operator A on $S'(\mathbb{R}^N)$ is globally regular if

$$u \in S'(\mathbb{R}^N), \quad Au \in S(\mathbb{R}^N) \implies u \in S(\mathbb{R}^N).$$

向 ト イヨ ト イヨ ト

æ

Definition

A linear operator A on $S'(\mathbb{R}^N)$ is globally regular if

$$u \in S'(\mathbb{R}^N), \quad Au \in S(\mathbb{R}^N) \implies u \in S(\mathbb{R}^N).$$

Definition

A polynomial $a(x,\xi)$ on $\mathbb{R}^n \times \mathbb{R}^n$ is globally hypo-elliptic if

$$\lim_{|x|+|\xi|\to\infty}\frac{\left|\nabla a(x,\xi)\right|}{1+\left|a(x,\xi)\right|}=0.$$

イロン 不得 とくほ とくほ とうほ

Definition

A linear operator A on $S'(\mathbb{R}^N)$ is globally regular if

$$u \in S'(\mathbb{R}^N), \quad Au \in S(\mathbb{R}^N) \implies u \in S(\mathbb{R}^N).$$

Definition

A polynomial $a(x,\xi)$ on $\mathbb{R}^n \times \mathbb{R}^n$ is globally hypo-elliptic if

$$\lim_{|x|+|\xi|\to\infty}\frac{\left|\nabla a(x,\xi)\right|}{1+\left|a(x,\xi)\right|}=0.$$

Theorem (Tulovskiĭ and Šubin, 1973)

If
$$a(x,\xi) = \sum_{|\alpha|+|\beta| \le m} x^{\alpha} \xi^{\beta}$$
 is globally hypo-elliptic, then
 $a(x,D) = \sum_{|\alpha|+|\beta| \le m} x^{\alpha} D_{x}^{\beta}$

is a globally regular operator.

Sac

Global hypo-ellipticity regards both x and ξ . It is not necessary for global regularity.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Global hypo-ellipticity regards both x and ξ . It is not necessary for global regularity.

Questions

O Are there necessary and sufficient conditions for global regularity of an operator A : S'(ℝ^N) → S'(ℝ^N)?

く 同 と く ヨ と く ヨ と

Global hypo-ellipticity regards both x and ξ . It is not necessary for global regularity.

Questions

- Are there necessary and sufficient conditions for global regularity of an operator A : S'(ℝ^N) → S'(ℝ^N)?
- If not, are there sufficient conditions for global regularity, different from global hypoellipticity?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Global hypo-ellipticity regards both x and ξ . It is not necessary for global regularity.

Questions

- Are there necessary and sufficient conditions for global regularity of an operator A : S'(ℝ^N) → S'(ℝ^N)?
- If not, are there sufficient conditions for global regularity, different from global hypoellipticity?
- Can the problem be considered in more general frameworks than Schwartz classes?

く 同 ト く ヨ ト く ヨ ト

• Are there necessary and sufficient conditions for global regularity of an operator $A : S'(\mathbb{R}^N) \to S'(\mathbb{R}^N)$?

프 에 에 프 어

ъ

• Are there necessary and sufficient conditions for global regularity of an operator $A : S'(\mathbb{R}^N) \to S'(\mathbb{R}^N)$? No

This is a difficult problem, and it is still open even for very special classes of operators

프 🖌 🛪 프 🕨

• Are there necessary and sufficient conditions for global regularity of an operator $A : S'(\mathbb{R}^N) \to S'(\mathbb{R}^N)$? No

This is a difficult problem, and it is still open even for very special classes of operators (for instance, ordinary differential operators).

프 🖌 🛪 프 🛌

• Are there necessary and sufficient conditions for global regularity of an operator $A : S'(\mathbb{R}^N) \to S'(\mathbb{R}^N)$? No

This is a difficult problem, and it is still open even for very special classes of operators (for instance, ordinary differential operators).

• [F. Nicola, L. Rodino, 2013] Necessary and sufficient conditions for global regularity of ordinary differential operators with polynomial coefficients under additional hypotheses.

ヨト イヨト

• Are there necessary and sufficient conditions for global regularity of an operator $A : S'(\mathbb{R}^N) \to S'(\mathbb{R}^N)$? No

This is a difficult problem, and it is still open even for very special classes of operators (for instance, ordinary differential operators).

- [F. Nicola, L. Rodino, 2013] Necessary and sufficient conditions for global regularity of ordinary differential operators with polynomial coefficients under additional hypotheses.
- [E. Buzano, A. O., 2020] Necessary and sufficient conditions for global regularity of ordinary differential operators of order 2 with polymonial coefficients of degree 2.

→ Ξ → < Ξ →</p>

Are there necessary and sufficient conditions for global regularity of an operator A : S'(ℝ^N) → S'(ℝ^N)? No

This is a difficult problem, and it is still open even for very special classes of operators (for instance, ordinary differential operators).

- [F. Nicola, L. Rodino, 2013] Necessary and sufficient conditions for global regularity of ordinary differential operators with polynomial coefficients under additional hypotheses.
- [E. Buzano, A. O., 2020] Necessary and sufficient conditions for global regularity of ordinary differential operators of order 2 with polymonial coefficients of degree 2.
- [E. Buzano, 2022] Necessary and sufficient conditions for global regularity of ordinary differential operators of order 2 with polymonial coefficients of any degree.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

If not, are there sufficient conditions for global regularity, different from global hypoellipticity?

If not, are there sufficient conditions for global regularity, different from global hypoellipticity?

Consider differential operator with polynomial coefficients:

$$\sum_{lpha+eta|\leqslant m} c_{lpha,eta} x^lpha D^eta, ext{ where } D^eta=(-i)^{|eta|}\partial^eta.$$

If not, are there sufficient conditions for global regularity, different from global hypoellipticity?

Consider differential operator with polynomial coefficients:

$$\sum_{\alpha+\beta|\leqslant m} c_{\alpha,\beta} x^{\alpha} D^{\beta}, \text{ where } D^{\beta} = (-i)^{|\beta|} \partial^{\beta}.$$

• [M.-W. Wong, 2005] The Twisted Laplacian

$$\left(D_y-\frac{1}{2}x\right)^2+\left(D_x+\frac{1}{2}y\right)^2$$

is globally regular, although its symbol $(\eta - \frac{1}{2}x)^2 + (\xi + \frac{1}{2}y)^2$ is not globally hypo-elliptic.

If not, are there sufficient conditions for global regularity, different from global hypoellipticity?

Consider differential operator with polynomial coefficients:

$$\sum_{\alpha+\beta|\leqslant m} c_{\alpha,\beta} x^{\alpha} D^{\beta}, \text{ where } D^{\beta} = (-i)^{|\beta|} \partial^{\beta}.$$

• [M.-W. Wong, 2005] The Twisted Laplacian

$$\left(D_y-\frac{1}{2}x\right)^2+\left(D_x+\frac{1}{2}y\right)^2$$

is globally regular, although its symbol $(\eta - \frac{1}{2}x)^2 + (\xi + \frac{1}{2}y)^2$ is not globally hypo-elliptic.

• [E. Buzano, A. O., 2020] Global regularity for a class of PDO containing the Twisted Laplacian.

Can the problem be considered in more general frameworks than Schwartz classes?

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Can the problem be considered in more general frameworks than Schwartz classes?

Definition

A linear operator A on $S'(\mathbb{R}^N)$ is globally regular if

$$u \in S'(\mathbb{R}^N), \quad Au \in S(\mathbb{R}^N) \implies u \in S(\mathbb{R}^N).$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Can the problem be considered in more general frameworks than Schwartz classes?
 - [C. Boiti, D. Jornet, A. O., 2017], [C. Mele, A. O., 2021] Global regularity in ultradifferentiable spaces for non hypoelliptic operators.

Definition

A linear operator A on $S'(\mathbb{R}^N)$ is globally regular if

$$u \in S'(\mathbb{R}^N), \quad Au \in S(\mathbb{R}^N) \implies u \in S(\mathbb{R}^N).$$

<回と < 回と < 回と

Definition

A weight function (in the sense of Braun-Meise-Taylor) is a continuous increasing function $\omega : [0, \infty) \rightarrow [0, \infty)$ such that:

(α) there exists $K \ge 1$ such that $\omega(2t) \le K(1 + \omega(t))$ for every $t \ge 0$;

(
$$\beta$$
) $\omega(t) = o(t)$ as $t \to \infty$;

- (γ) there exist $a \in \mathbb{R}$, b > 0 such that $\omega(t) \ge a + b \log(1 + t)$, for every $t \ge 0$;
- (δ) $\varphi_{\omega}(t) = \omega \circ \exp(t)$ is a convex function.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

A weight function (in the sense of Braun-Meise-Taylor) is a continuous increasing function $\omega : [0, \infty) \rightarrow [0, \infty)$ such that:

(α) there exists $K \ge 1$ such that $\omega(2t) \le K(1 + \omega(t))$ for every $t \ge 0$;

(
$$\beta$$
) $\omega(t) = o(t)$ as $t \to \infty$;

- (γ) there exist $a \in \mathbb{R}$, b > 0 such that $\omega(t) \ge a + b \log(1 + t)$, for every $t \ge 0$;
- (δ) $\varphi_{\omega}(t) = \omega \circ \exp(t)$ is a convex function.

We define the Young conjugate φ^*_ω of φ_ω as

$$arphi^*_\omega(oldsymbol{s}) := \sup_{t\geq 0} \{ toldsymbol{s} - arphi_\omega(t) \}, \quad oldsymbol{s} \geq oldsymbol{0}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

A weight function (in the sense of Braun-Meise-Taylor) is a continuous increasing function $\omega : [0, \infty) \rightarrow [0, \infty)$ such that:

(α) there exists $K \ge 1$ such that $\omega(2t) \le K(1 + \omega(t))$ for every $t \ge 0$;

(
$$\beta$$
) $\omega(t) = o(t)$ as $t \to \infty$;

- (γ) there exist $a \in \mathbb{R}$, b > 0 such that $\omega(t) \ge a + b \log(1 + t)$, for every $t \ge 0$;
- (δ) $\varphi_{\omega}(t) = \omega \circ \exp(t)$ is a convex function.

We define the Young conjugate φ^*_ω of φ_ω as

$$arphi^*_\omega(oldsymbol{s}) := \sup_{t\geq 0} \{ toldsymbol{s} - arphi_\omega(t) \}, \quad oldsymbol{s} \geq oldsymbol{0}.$$

As usual, we extend ω to all \mathbb{R} by defining $\omega(t) = \omega(|t|)$.

Consider a collection of weight functions ω_j , σ_j for j = 1, ..., N.

御 医 金属 医 金属 医

ъ

Consider a collection of weight functions ω_j , σ_j for j = 1, ..., N. We denote by Ω and Σ the functions on \mathbb{R}^N defined by

$$\Omega = \omega_1 \oplus \cdots \oplus \omega_N, \quad \Sigma = \sigma_1 \oplus \cdots \oplus \sigma_N,$$

in the sense that, for $x \in \mathbb{R}^N$,

$$\Omega(\mathbf{x}) := \omega_1(\mathbf{x}_1) + \cdots + \omega_N(\mathbf{x}_N),$$

$$\Sigma(\mathbf{x}) := \sigma_1(\mathbf{x}_1) + \cdots + \sigma_N(\mathbf{x}_N).$$

프 🖌 🔺 프 🛌

Consider a collection of weight functions ω_j , σ_j for j = 1, ..., N. We denote by Ω and Σ the functions on \mathbb{R}^N defined by

$$\Omega = \omega_1 \oplus \cdots \oplus \omega_N, \quad \Sigma = \sigma_1 \oplus \cdots \oplus \sigma_N,$$

in the sense that, for $x \in \mathbb{R}^N$,

$$\Omega(\mathbf{x}) := \omega_1(\mathbf{x}_1) + \cdots + \omega_N(\mathbf{x}_N),$$

$$\Sigma(\mathbf{x}) := \sigma_1(\mathbf{x}_1) + \cdots + \sigma_N(\mathbf{x}_N).$$

Definition

Let Ω , Σ be as before. We define $S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$ as the space of all functions $f \in L^{1}(\mathbb{R}^{N})$ such that $f, \hat{f} \in C^{\infty}(\mathbb{R}^{N})$ and

$$\begin{split} &\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty}<\infty, \text{ for each } \lambda>0, \ \alpha\in\mathbb{N}_{0}^{N},\\ &\|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty}<\infty, \text{ for each } \lambda>0, \ \alpha\in\mathbb{N}_{0}^{N}. \end{split}$$

Remark

The weight functions ω_j and σ_j of course do not need to be different.

Remark

The weight functions ω_j and σ_j of course do not need to be different.

In the case when some of them coincide we can put together the corresponding variables, in the following sense: if for instance $\omega_2 = \omega_1$, we can choose

$$\Omega = \omega_1(x_1) + \omega_1(x_2) + \omega_3(x_3) + \cdots + \omega_N(x_N),$$

or

$$\Omega = \omega_1(|(x_1, x_2)|) + \omega_3(x_3) + \cdots + \omega_N(x_N),$$

and the corresponding space $\mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^N)$ does not change.

Remark

The weight functions ω_j and σ_j of course do not need to be different.

In the case when some of them coincide we can put together the corresponding variables, in the following sense: if for instance $\omega_2 = \omega_1$, we can choose

$$\Omega = \omega_1(\mathbf{x}_1) + \omega_1(\mathbf{x}_2) + \omega_3(\mathbf{x}_3) + \cdots + \omega_N(\mathbf{x}_N),$$

or

$$\Omega = \omega_1(|(x_1, x_2)|) + \omega_3(x_3) + \cdots + \omega_N(x_N),$$

and the corresponding space $\mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{N})$ does not change.

In particular, if $\omega_1 = \cdots = \omega_N = \sigma_1 = \cdots = \sigma_N := \omega$, the space $S_{\Omega}^{\Sigma}(\mathbb{R}^N)$ coincides with the space S_{ω} as defined in [Björck, 1966].

• $S_{\Omega}^{\Sigma}(\mathbb{R}^{N}) \subset S(\mathbb{R}^{N})$, with continuous inclusion.

御下 くまと くまとう

ъ

• $S_{\Omega}^{\Sigma}(\mathbb{R}^{N}) \subset S(\mathbb{R}^{N})$, with continuous inclusion.

•
$$\mathcal{S}'(\mathbb{R}^N) \subset (\mathcal{S}_{\Omega}^{\Sigma})'(\mathbb{R}^N).$$

御下 くまと くまとう

ъ

- $S_{\Omega}^{\Sigma}(\mathbb{R}^N) \subset S(\mathbb{R}^N)$, with continuous inclusion.
- $S'(\mathbb{R}^N) \subset (S_{\Omega}^{\Sigma})'(\mathbb{R}^N).$
- $\mathfrak{F}: S^{\Sigma}_{\Omega}(\mathbb{R}^N) \to S^{\Omega}_{\Sigma}(\mathbb{R}^N)$ is a continuous isomorphism.

通 とく ヨ とく ヨ とう

- $\mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^N) \subset \mathbb{S}(\mathbb{R}^N)$, with continuous inclusion.
- $S'(\mathbb{R}^N) \subset (S_{\Omega}^{\Sigma})'(\mathbb{R}^N).$
- $\mathfrak{F}: S^{\Sigma}_{\Omega}(\mathbb{R}^N) \to S^{\Omega}_{\Sigma}(\mathbb{R}^N)$ is a continuous isomorphism.
- S^Σ_Ω(ℝ^N) is closed under convolution, arithmetic product of functions, translation and modulation.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

- $S_{\Omega}^{\Sigma}(\mathbb{R}^{N}) \subset S(\mathbb{R}^{N})$, with continuous inclusion.
- $S'(\mathbb{R}^N) \subset (S_{\Omega}^{\Sigma})'(\mathbb{R}^N).$
- $\mathfrak{F}: S^{\Sigma}_{\Omega}(\mathbb{R}^N) \to S^{\Omega}_{\Sigma}(\mathbb{R}^N)$ is a continuous isomorphism.
- S^Σ_Ω(ℝ^N) is closed under convolution, arithmetic product of functions, translation and modulation.
- Consider the short-time Fourier transform

$$V_g f(x,\xi) = \int_{\mathbb{R}^N} \exp(-it\xi) f(t) \overline{g(t-x)} \, dt.$$

通 とく ヨ とく ヨ とう

- $S_{\Omega}^{\Sigma}(\mathbb{R}^{N}) \subset S(\mathbb{R}^{N})$, with continuous inclusion.
- $S'(\mathbb{R}^N) \subset (S_{\Omega}^{\Sigma})'(\mathbb{R}^N).$
- $\mathfrak{F}: S^{\Sigma}_{\Omega}(\mathbb{R}^N) \to S^{\Omega}_{\Sigma}(\mathbb{R}^N)$ is a continuous isomorphism.
- S^Σ_Ω(ℝ^N) is closed under convolution, arithmetic product of functions, translation and modulation.
- Consider the short-time Fourier transform

$$V_g f(x,\xi) = \int_{\mathbb{R}^N} \exp(-it\xi) f(t) \overline{g(t-x)} \, dt.$$

Let $g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, $g \neq 0$. Then for $f \in (S_{\Omega}^{\Sigma})'(\mathbb{R}^{N})$ the following conditions are equivalent:

(1) $f \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$; (2) For each $\lambda > 0$ there exists a constant $C_{\lambda} > 0$ so that

$$|V_g f(x,\xi)| \leq C_\lambda \exp(-\lambda(\Omega(x) + \Sigma(\xi))),$$

for each $(x, \xi) \in \mathbb{R}^{2N}$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Young conjugates

We recall that

$$\Omega(\mathbf{x}) := \omega_1(\mathbf{x}_1) + \cdots + \omega_N(\mathbf{x}_N)$$
$$\Sigma(\mathbf{x}) := \sigma_1(\mathbf{x}_1) + \cdots + \sigma_N(\mathbf{x}_N).$$

◆□ > ◆□ > ◆豆 > ◆豆 > →

We recall that

$$\Omega(\mathbf{x}) := \omega_1(\mathbf{x}_1) + \cdots + \omega_N(\mathbf{x}_N)$$
$$\Sigma(\mathbf{x}) := \sigma_1(\mathbf{x}_1) + \cdots + \sigma_N(\mathbf{x}_N).$$

We have the Young conjugates $\varphi^*_{\omega_j}$ and $\varphi^*_{\sigma_j}$ of φ_{ω_j} and φ_{σ_j} respectively, and we define

$$\Phi_{\Omega}^{*}(y) = \varphi_{\omega_{1}}^{*}(y_{1}) + \dots + \varphi_{\omega_{N}}^{*}(y_{N})$$
$$\Phi_{\Sigma}^{*}(y) = \varphi_{\sigma_{1}}^{*}(y_{1}) + \dots + \varphi_{\sigma_{N}}^{*}(y_{N}).$$
for $y \in \mathbb{R}^{N}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Let $1 \le p, q \le \infty$. Then the following conditions are equivalent: (1) $f \in \mathscr{S}_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, i.e., $\forall \lambda > 0, \ \alpha \in \mathbb{N}_{0}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty} < \infty, \ \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty} < \infty.$

直 とう ゆう とう とう

Let $1 \le p, q \le \infty$. Then the following conditions are equivalent: (1) $f \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, i.e., $\forall \lambda > 0, \ \alpha \in \mathbb{N}_{0}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty} < \infty, \ \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty} < \infty.$ (2) $\forall \lambda > 0, \ \alpha \in \mathbb{N}_{0}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{p} < \infty, \ \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{q} < \infty.$

直 とう ゆう とう とう

Let
$$1 \le p, q \le \infty$$
. Then the following conditions are equivalent:
(1) $f \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, i.e., $\forall \lambda > 0$, $\alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty} < \infty$, $\|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty} < \infty$.
(2) $\forall \lambda > 0$, $\alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(\lambda\Omega)D^{\alpha}f\|_{p} < \infty$, $\|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{q} < \infty$.
(3) $\forall \lambda > 0$, $\alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(\lambda\Omega)x^{\alpha}f\|_{p} < \infty$, $\|\exp(\lambda\Sigma)\xi^{\alpha}\hat{f}\|_{q} < \infty$.

▶ ★ 臣 ▶ ...

Let $1 \leq p, q \leq \infty$. Then the following conditions are equivalent: (1) $f \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, i.e., $\forall \lambda > 0, \ \alpha \in \mathbb{N}_{0}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty} < \infty, \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty} < \infty.$ (2) $\forall \lambda > \mathbf{0}, \ \alpha \in \mathbb{N}_{\mathbf{0}}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\rho} < \infty, \ \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\sigma} < \infty.$ (3) $\forall \lambda > \mathbf{0}, \ \alpha \in \mathbb{N}_{\mathbf{0}}^{N}$ $\|\exp(\lambda\Omega)x^{\alpha}f\|_{p} < \infty, \|\exp(\lambda\Sigma)\xi^{\alpha}\hat{f}\|_{p} < \infty.$ (4) $\forall \lambda > 0$ $\|\exp(\lambda\Omega)f\|_{\rho} < \infty, \|\exp(\lambda\Sigma)\hat{f}\|_{\rho} < \infty.$

★ 문 ► ★ 문 ►

Let $1 < p, q < \infty$. Then the following conditions are equivalent: (1) $f \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, i.e., $\forall \lambda > 0, \ \alpha \in \mathbb{N}_{0}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty} < \infty, \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty} < \infty.$ (2) $\forall \lambda > \mathbf{0}, \ \alpha \in \mathbb{N}_{\mathbf{0}}^{N}$ $\|\exp(\lambda\Omega)D^{\alpha}f\|_{p} < \infty, \|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{p} < \infty.$ (3) $\forall \lambda > \mathbf{0}, \ \alpha \in \mathbb{N}_{\mathbf{0}}^{N}$ $\|\exp(\lambda\Omega)\mathbf{x}^{\alpha}f\|_{p} < \infty, \|\exp(\lambda\Sigma)\xi^{\alpha}\hat{f}\|_{p} < \infty.$ (4) $\forall \lambda > 0$ $\|\exp(\lambda\Omega)f\|_{\rho} < \infty, \|\exp(\lambda\Sigma)\hat{f}\|_{\rho} < \infty.$ (5) (a) $\forall \lambda > 0, \beta \in \mathbb{N}_0^N$, there exists $C_{\beta,\lambda} > 0$ such that $\forall \alpha \in \mathbb{N}_0^N$ $\left\|\exp\left(-\lambda\Phi_{\Sigma}^{*}\left(\frac{\alpha}{\lambda}\right)\right)\mathbf{x}^{\beta}D^{\alpha}f\right\|_{\mathbf{p}}\leq C_{\beta,\lambda};$ (b) $\forall \mu > 0, \alpha \in \mathbb{N}_0^N$, there exists $C_{\alpha,\mu} > 0$ such that $\forall \beta \in \mathbb{N}_0^N$ $\left\|\exp\left(-\mu\Phi_{\Omega}^{*}\left(\frac{\beta}{\mu}\right)\right)\boldsymbol{x}^{\beta}\boldsymbol{D}^{\alpha}\boldsymbol{f}\right\|_{\sigma}\leq \boldsymbol{C}_{\alpha,\mu}.$

過 とく ヨ とく ヨ とう

Let
$$1 \leq p, q \leq \infty$$
. Then the following conditions are equivalent:
(1) $f \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, i.e., $\forall \lambda > 0$, $\alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(\lambda\Omega)D^{\alpha}f\|_{\infty} < \infty$, $\|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{\infty} < \infty$.
(2) $\forall \lambda > 0$, $\alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(\lambda\Omega)D^{\alpha}f\|_{p} < \infty$, $\|\exp(\lambda\Sigma)D^{\alpha}\hat{f}\|_{q} < \infty$.
(3) $\forall \lambda > 0$, $\alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(\lambda\Omega)x^{\alpha}f\|_{p} < \infty$, $\|\exp(\lambda\Sigma)\hat{\xi}^{\alpha}\hat{f}\|_{q} < \infty$.
(4) $\forall \lambda > 0$
 $\|\exp(\lambda\Omega)f\|_{p} < \infty$, $\|\exp(\lambda\Sigma)\hat{f}\|_{q} < \infty$.
(5) (a) $\forall \lambda > 0$, $\beta \in \mathbb{N}_{0}^{N}$, there exists $C_{\beta,\lambda} > 0$ such that $\forall \alpha \in \mathbb{N}_{0}^{N}$
 $\|\exp(-\lambda\Phi_{\Sigma}^{*}(\frac{\alpha}{\lambda}))x^{\beta}D^{\alpha}f\|_{p} \leq C_{\beta,\lambda}$;
(b) $\forall \mu > 0$, $\alpha \in \mathbb{N}_{0}^{N}$, there exists $C_{\alpha,\mu} > 0$ such that $\forall \beta \in \mathbb{N}_{0}^{N}$
 $\|\exp(-\mu\Phi_{\Omega}^{*}(\frac{\beta}{\mu}))x^{\beta}D^{\alpha}f\|_{q} \leq C_{\alpha,\mu}$.
(6) $\forall \lambda, \mu > 0$ there exists $C_{\mu,\lambda} > 0$ such that $\forall \alpha, \beta \in \mathbb{N}_{0}^{N}$
 $\|\exp(-\lambda\Phi_{\Sigma}^{*}(\frac{\alpha}{\lambda}) - \mu\Phi_{\Omega}^{*}(\frac{\beta}{\mu}))x^{\beta}D^{\alpha}f\|_{p} \leq C_{\mu;\lambda}$.

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by $W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x + \frac{t}{2}\right) \overline{g\left(x - \frac{t}{2}\right)} dt$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

э.

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

(日本) (日本) (日本)

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

$$Au = f$$

(日本) (日本) (日本)

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

$$W(Au, Au) = W(f, f)$$

(日本) (日本) (日本)

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

$$W(Au, Au) = W(f, f)$$

(日本) (日本) (日本)

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

$$W(Au, Au) = W(f, f)$$

$$\parallel \qquad \parallel$$

$$B(W(u, u)) \qquad F$$

(日本) (日本) (日本)

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

$$W(Au, Au) = W(f, f)$$

$$\parallel \qquad \parallel$$

$$B(W(u, u)) \qquad F$$

Then look for a solution of the equation Bg = F.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

э

Given $f, g \in S_{\Omega}^{\Sigma}(\mathbb{R}^{N})$, the Wigner transform of f, g is given by

$$W(f,g)(x,\xi) = \int e^{-it\xi} f\left(x+\frac{t}{2}\right) \overline{g\left(x-\frac{t}{2}\right)} dt$$

We refer to some papers of Cohen and Galleani (2002-2004), related to engineering applications.

$$W(Au, Au) = W(f, f)$$

$$\parallel \qquad \parallel$$

$$B(W(u, u)) \qquad F$$

Then look for a solution of the equation Bg = F.

If *A* is a (1 variable) linear operator with polynomial coefficients, *B* is a (2 variables) linear operator (with polynomial coefficients).

直 とくほ とくほう

Definition

Given
$$u \in S_{\Omega}^{\Sigma}(\mathbb{R}^{2N})$$
, we define $\operatorname{Wig}[u] : \mathbb{R}^{2N} \to \mathbb{C}$ as
 $\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^{N}} \exp(-it\xi)u\left(x + \frac{t}{2}, x - \frac{t}{2}\right) dt.$

ヘロト 人間 とくほとくほとう

₹ 990

Definition

Given
$$u \in S_{\Omega}^{\Sigma}(\mathbb{R}^{2N})$$
, we define $\operatorname{Wig}[u] : \mathbb{R}^{2N} \to \mathbb{C}$ as
 $\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^{N}} \exp(-it\xi)u\left(x + \frac{t}{2}, x - \frac{t}{2}\right) dt.$

We consider an operator with polynomial coefficients

$$P(x, y, D_x, D_y) = \sum_{|\alpha+\beta+\gamma+\mu| \le m} c_{\alpha\beta\gamma\mu} x^{\alpha} y^{\beta} D_x^{\gamma} D_y^{\mu},$$

ヘロン ヘアン ヘビン ヘビン

3

Definition

Given
$$u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N})$$
, we define $\operatorname{Wig}[u] : \mathbb{R}^{2N} \to \mathbb{C}$ as
 $\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^{N}} \exp(-it\xi)u\left(x + \frac{t}{2}, x - \frac{t}{2}\right) dt.$

We consider an operator with polynomial coefficients

$${\it P}(x,y,{\it D}_x,{\it D}_y) = \sum_{|lpha+eta+\gamma+\mu|\leq m} c_{lphaeta\gamma\mu} x^lpha y^eta {\it D}_x^\gamma {\it D}_y^\mu,$$

$$\operatorname{Wig}[Pu] = ?? \operatorname{Wig}[u]$$

ヘロン ヘアン ヘビン ヘビン

3

$$R_j: S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \to S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}), \quad j = 1, \dots, N,$$

and consider $\mathbf{R} = (R_1, \dots, R_N)$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$R_j: S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \to S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}), \quad j = 1, \dots, N,$$

and consider $\textbf{R}=(\textit{R}_{1},\ldots,\textit{R}_{N}),$ in the sense that for $\textit{w}\in\mathbb{S}_{\Omega}^{\Sigma}$

 $\mathbf{R}\boldsymbol{w}=(R_1\boldsymbol{w},\ldots,R_N\boldsymbol{w}).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$R_j: \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \to \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}), \quad j = 1, \dots, N,$$

and consider $\mathbf{R} = (R_1, \dots, R_N)$, in the sense that for $w \in \mathbb{S}_{\Omega}^{\Sigma}$

$$\mathbf{R}\boldsymbol{w}=(R_1\boldsymbol{w},\ldots,R_N\boldsymbol{w})$$

We use the multi-index notation. For $\gamma \in \mathbb{N}_0^N$,

$$\mathbf{R}^{\gamma}=R_{1}^{\gamma_{1}}\cdots R_{N}^{\gamma_{N}}.$$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

1

$$R_j: \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \to \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}), \quad j = 1, \dots, N,$$

and consider $\mathbf{R} = (R_1, \dots, R_N)$, in the sense that for $w \in \mathbb{S}_{\Omega}^{\Sigma}$

$$\mathbf{R}\boldsymbol{w}=(\boldsymbol{R}_{1}\boldsymbol{w},\ldots,\boldsymbol{R}_{N}\boldsymbol{w}).$$

We use the multi-index notation. For $\gamma \in \mathbb{N}_0^N$,

$$\mathbf{R}^{\gamma}=R_{1}^{\gamma_{1}}\cdots R_{N}^{\gamma_{N}}.$$

If **R** satisfies commutation relations, i.e., $R_iR_j = R_jR_i$ for every i.j = 1, ..., N, then

$${f R}^\gamma {f R}^\mu = {f R}^{\gamma+\mu}, \qquad \gamma,\mu\in \mathbb{N}_{f 0}^{m N}.$$

イロト 不得 とくほ とくほ とうほ

$$R_j: \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \to \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}), \quad j = 1, \dots, N,$$

and consider $\mathbf{R} = (R_1, \dots, R_N)$, in the sense that for $w \in \mathbb{S}_\Omega^{\Sigma}$

$$\mathbf{R}\boldsymbol{w}=(\boldsymbol{R}_{1}\boldsymbol{w},\ldots,\boldsymbol{R}_{N}\boldsymbol{w}).$$

We use the multi-index notation. For $\gamma \in \mathbb{N}_0^N$,

$$\mathbf{R}^{\gamma}=R_{1}^{\gamma_{1}}\cdots R_{N}^{\gamma_{N}}.$$

If **R** satisfies commutation relations, i.e., $R_iR_j = R_jR_i$ for every i.j = 1, ..., N, then

$$\mathbf{R}^{\gamma}\mathbf{R}^{\mu} = \mathbf{R}^{\gamma+\mu}, \qquad \gamma, \mu \in \mathbb{N}_{\mathbf{0}}^{N}.$$

If **R** and **T** are vectors of operators, and $a, b \in \mathbb{C}$ we can consider

$$a\mathbf{R} + b\mathbf{T} = (aR_1 + bT_1, \dots, aR_N + bT_N)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$R_j: \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \to \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}), \quad j = 1, \dots, N,$$

and consider $\mathbf{R} = (R_1, \dots, R_N)$, in the sense that for $w \in \mathbb{S}_\Omega^{\Sigma}$

$$\mathbf{R}\boldsymbol{w}=(\boldsymbol{R}_{1}\boldsymbol{w},\ldots,\boldsymbol{R}_{N}\boldsymbol{w}).$$

We use the multi-index notation. For $\gamma \in \mathbb{N}_0^N$,

$$\mathbf{R}^{\gamma}=R_{1}^{\gamma_{1}}\cdots R_{N}^{\gamma_{N}}.$$

If **R** satisfies commutation relations, i.e., $R_iR_j = R_jR_i$ for every i.j = 1, ..., N, then

$$\mathbf{R}^{\gamma}\mathbf{R}^{\mu} = \mathbf{R}^{\gamma+\mu}, \qquad \gamma, \mu \in \mathbb{N}_{\mathbf{0}}^{N}.$$

If **R** and **T** are vectors of operators, and $a, b \in \mathbb{C}$ we can consider

$$a\mathbf{R} + b\mathbf{T} = (aR_1 + bT_1, \dots, aR_N + bT_N)$$

and then it makes sense to write $(a\mathbf{R} + b\mathbf{T})^{\gamma}$ for a multi index γ .

In particular, for $\mathbb{R}^{2N} \ni (x, y)$ we consider

$$\begin{split} \mathbf{M}_{\mathbf{f}} F(x,y) &= (x_1 F(x,y), \dots, x_N F(x,y)), \\ \mathbf{M}_{\mathbf{s}} F(x,y) &= (y_1 F(x,y), \dots, y_N F(x,y)), \\ \mathbf{D}_{\mathbf{f}} F(x,y) &= (D_{x_1} F(x,y), \dots, D_{x_N} F(x,y)), \\ \mathbf{D}_{\mathbf{s}} F(x,y) &= (D_{y_1} F(x,y), \dots, D_{y_N} F(x,y)). \end{split}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

In particular, for $\mathbb{R}^{2N} \ni (x, y)$ we consider

$$\begin{split} \mathbf{M}_{\mathbf{f}} F(x,y) &= (x_1 F(x,y), \dots, x_N F(x,y)), \\ \mathbf{M}_{\mathbf{s}} F(x,y) &= (y_1 F(x,y), \dots, y_N F(x,y)), \\ \mathbf{D}_{\mathbf{f}} F(x,y) &= (D_{x_1} F(x,y), \dots, D_{x_N} F(x,y)), \\ \mathbf{D}_{\mathbf{s}} F(x,y) &= (D_{y_1} F(x,y), \dots, D_{y_N} F(x,y)). \end{split}$$

Then

$${\mathcal P}(x,y,{\mathcal D}_x,{\mathcal D}_y) = \sum_{|lpha+eta+\gamma+\mu|\leq m} c_{lphaeta\gamma\mu} x^lpha y^eta {\mathcal D}_x^\gamma {\mathcal D}_y^\mu,$$

can be written as

$$\mathcal{P} = \mathcal{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}) = \sum_{|lpha+eta+\gamma+\mu|\leq m} c_{lphaeta\gamma\mu}\mathsf{M}_{\mathsf{f}}^{lpha}\,\mathsf{M}_{\mathsf{s}}^{eta}\,\mathsf{D}_{\mathsf{f}}^{\gamma}\,\mathsf{D}_{\mathsf{s}}^{\mu}$$

Theorem

Let P be a linear PDO with polynomial coefficients as before. Then for each $u \in S(\mathbb{R}^{2N})$, the following formula holds:

$$\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u],$$

for

$$\widetilde{P}(M_f,M_s,D_f,D_s) = P\left(M_f-\frac{D_s}{2},M_f+\frac{D_s}{2},M_s+\frac{D_f}{2},\frac{D_f}{2}-M_s\right).$$

Observe that \tilde{P} is still and operator with polynomial coefficients.

通 とう ほ とう ほ とう

Theorem

Let P be a linear PDO with polynomial coefficients as before. Then for each $u \in S(\mathbb{R}^{2N})$, the following formula holds:

$$\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u],$$

for

$$\widetilde{P}(M_f,M_s,D_f,D_s) = P\left(M_f - \frac{D_s}{2},M_f + \frac{D_s}{2},M_s + \frac{D_f}{2},\frac{D_f}{2} - M_s\right).$$

Observe that P is still and operator with polynomial coefficients.

What about global regularity?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Global regularity

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u]$

Definition

A linear operator P on S'(R^{2N}) is S-globally regular if

$$u \in S'(\mathbb{R}^{2N}), \quad Pu \in S(\mathbb{R}^{2N}) \implies u \in S(\mathbb{R}^{2N}).$$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

1

Global regularity

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u]$

Definition

• A linear operator P on $\mathcal{S}'(\mathbb{R}^{2N})$ is <u>S</u>-globally regular if

$$u \in S'(\mathbb{R}^{2N}), \quad Pu \in S(\mathbb{R}^{2N}) \implies u \in S(\mathbb{R}^{2N}).$$

• A linear operator P on $(\mathbb{S}_{\Omega}^{\Sigma})'(\mathbb{R}^{2N})$ is $\mathbb{S}_{\Omega}^{\Sigma}$ -globally regular if

$$u \in (\mathbb{S}^{\Sigma}_{\Omega})'(\mathbb{R}^{2N}), \quad Pu \in \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \implies u \in \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Global regularity

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u]$

Definition

A linear operator P on S'(R^{2N}) is S-globally regular if

$$u \in S'(\mathbb{R}^{2N}), \quad Pu \in S(\mathbb{R}^{2N}) \implies u \in S(\mathbb{R}^{2N}).$$

A linear operator P on (S^Σ_Ω)'(ℝ^{2N}) is S^Σ_Ω-globally regular if

$$u \in (\mathbb{S}^{\Sigma}_{\Omega})'(\mathbb{R}^{2N}), \quad \mathcal{P}u \in \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \implies u \in \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}).$$

• If *P* has globally hypoelliptic symbol, *P* is globally regular.

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u]$

Definition

A linear operator P on S'(R^{2N}) is S-globally regular if

$$u \in S'(\mathbb{R}^{2N}), \quad Pu \in S(\mathbb{R}^{2N}) \implies u \in S(\mathbb{R}^{2N}).$$

• A linear operator *P* on $(\mathbb{S}^{\Sigma}_{\Omega})'(\mathbb{R}^{2N})$ is $\mathbb{S}^{\Sigma}_{\Omega}$ -globally regular if

$$u\in (\mathbb{S}^{\Sigma}_{\Omega})'(\mathbb{R}^{2N}), \quad \mathcal{P}u\in \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}) \implies u\in \mathbb{S}^{\Sigma}_{\Omega}(\mathbb{R}^{2N}).$$

If *P* has globally hypoelliptic symbol, *P* is globally regular.
The symbol of *P* is never globally hypoelliptic.

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u]$

Definition

A linear operator P on S'(R^{2N}) is S-globally regular if

$$u \in S'(\mathbb{R}^{2N}), \quad Pu \in S(\mathbb{R}^{2N}) \implies u \in S(\mathbb{R}^{2N}).$$

• A linear operator P on $(S_{\Omega}^{\Sigma})'(\mathbb{R}^{2N})$ is S_{Ω}^{Σ} -globally regular if

$$u \in (\mathbb{S}_{\Omega}^{\Sigma})'(\mathbb{R}^{2N}), \quad \mathcal{P}u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \implies u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}).$$

- If *P* has globally hypoelliptic symbol, *P* is globally regular.
- The symbol of \tilde{P} is never globally hypoelliptic.
- *P* is *S*-globally regular $\iff \widetilde{P}$ is *S*-globally regular.

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u]$

Definition

A linear operator P on S'(R^{2N}) is S-globally regular if

$$u \in S'(\mathbb{R}^{2N}), \quad Pu \in S(\mathbb{R}^{2N}) \implies u \in S(\mathbb{R}^{2N}).$$

• A linear operator P on $(\mathbb{S}_{\Omega}^{\Sigma})'(\mathbb{R}^{2N})$ is $\mathbb{S}_{\Omega}^{\Sigma}$ -globally regular if

$$u \in (\mathbb{S}_{\Omega}^{\Sigma})'(\mathbb{R}^{2N}), \quad \mathcal{P}u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \implies u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}).$$

- If *P* has globally hypoelliptic symbol, *P* is globally regular.
- The symbol of \tilde{P} is never globally hypoelliptic.
- P is *S*-globally regular $\iff \widetilde{P}$ is *S*-globally regular.
- What about $\mathbb{S}_{\Omega}^{\Sigma}$ -globally regularity?

Action of Wigner type transform on $\mathbb{S}_{\Omega}^{\Sigma}$

$$\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^N} \exp(-it\xi) u\left(x+\frac{t}{2},x-\frac{t}{2}\right) dt, \ u \in S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}).$$

通 とくほ とくほ とう

Action of Wigner type transform on S_{Ω}^{Σ}

$$\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^N} \exp(-it\xi) u\left(x+\frac{t}{2},x-\frac{t}{2}\right) dt, \ u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}).$$

$$\Omega(x, y) = \omega_{1,1}(x_1) + \dots + \omega_{1,N}(x_N) + \omega_{2,1}(y_1) + \dots + \omega_{2,N}(y_N),$$

$$\Sigma(\xi, \eta) = \sigma_{1,1}(\xi_1) + \dots + \sigma_{1,N}(\xi_N) + \sigma_{2,1}(\eta_1) + \dots + \sigma_{2,N}(\eta_N).$$

A E > A E >

Action of Wigner type transform on S_{Ω}^{Σ}

$$\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^N} \exp(-it\xi) u\left(x+\frac{t}{2},x-\frac{t}{2}\right) dt, \ u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}).$$

$$\Omega(x, y) = \omega_{1,1}(x_1) + \dots + \omega_{1,N}(x_N) + \omega_{2,1}(y_1) + \dots + \omega_{2,N}(y_N),$$

$$\Sigma(\xi, \eta) = \sigma_{1,1}(\xi_1) + \dots + \sigma_{1,N}(\xi_N) + \sigma_{2,1}(\eta_1) + \dots + \sigma_{2,N}(\eta_N).$$

Then

Wig :
$$S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \to S_{\Omega_1}^{\Sigma_1}(\mathbb{R}^{2N});$$

where

$$\begin{aligned} \Omega_1(x,y) &= \omega_{1,1}(x_1) + \dots + \omega_{1,N}(x_N) + \sigma_{2,1}(y_1) + \dots + \sigma_{2,N}(y_N), \\ \Sigma_1(\xi,\eta) &= \sigma_{1,1}(\xi_1) + \dots + \sigma_{1,N}(\xi_N) + \omega_{2,1}(\eta_1) + \dots + \omega_{2,N}(\eta_N). \end{aligned}$$

通りくほりくほう

Action of Wigner type transform on S_{Ω}^{Σ}

$$\operatorname{Wig}[u](x,\xi) = \int_{\mathbb{R}^N} \exp(-it\xi) u\left(x+\frac{t}{2},x-\frac{t}{2}\right) dt, \ u \in \mathbb{S}_{\Omega}^{\Sigma}(\mathbb{R}^{2N}).$$

$$\Omega(\mathbf{x}, \mathbf{y}) = \omega_{1,1}(\mathbf{x}_1) + \dots + \omega_{1,N}(\mathbf{x}_N) + \omega_{2,1}(\mathbf{y}_1) + \dots + \omega_{2,N}(\mathbf{y}_N),$$

$$\Sigma(\xi, \eta) = \sigma_{1,1}(\xi_1) + \dots + \sigma_{1,N}(\xi_N) + \sigma_{2,1}(\eta_1) + \dots + \sigma_{2,N}(\eta_N).$$

Then

$$\begin{split} & \operatorname{Wig} : S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \to S_{\Omega_{1}}^{\Sigma_{1}}(\mathbb{R}^{2N}); \\ & \operatorname{Wig} : (S_{\Omega}^{\Sigma})'(\mathbb{R}^{2N}) \to \left(S_{\Omega_{1}}^{\Sigma_{1}}\right)'(\mathbb{R}^{2N}); \\ & \operatorname{Wig}^{-1} : S_{\Omega}^{\Sigma}(\mathbb{R}^{2N}) \to S_{\Omega_{1}}^{\Sigma_{1}}(\mathbb{R}^{2N}); \\ & \operatorname{Wig}^{-1} : (S_{\Omega}^{\Sigma})'(\mathbb{R}^{2N}) \to \left(S_{\Omega_{1}}^{\Sigma_{1}}\right)'(\mathbb{R}^{2N}). \end{split}$$

where

$$\Omega_{1}(x, y) = \omega_{1,1}(x_{1}) + \dots + \omega_{1,N}(x_{N}) + \sigma_{2,1}(y_{1}) + \dots + \sigma_{2,N}(y_{N}),$$

$$\Sigma_{1}(\xi, \eta) = \sigma_{1,1}(\xi_{1}) + \dots + \sigma_{1,N}(\xi_{N}) + \omega_{2,1}(\eta_{1}) + \dots + \omega_{2,N}(\eta_{N}).$$

通りくほりくほう

Global regularity in $\mathbb{S}_{\Omega}^{\Sigma}$

$\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u],$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � � �

Global regularity in $\mathbb{S}_{\Omega}^{\Sigma}$

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u],$

Theorem [C. Mele, A. O.]

Let *P* be a linear PDO with polynomial coefficients and let Ω , Σ , Ω_1 , Σ_1 be as before. *P* is S_{Ω}^{Σ} -regular $\iff \widetilde{P}$ is $S_{\Omega_1}^{\Sigma_1}$ -regular.

通 とく ヨ とく ヨ とう

Global regularity in $\mathbb{S}_{\Omega}^{\Sigma}$

 $\operatorname{Wig}\left[P\left(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}}\right)u\right]=\widetilde{P}(\mathsf{M}_{\mathsf{f}},\mathsf{M}_{\mathsf{s}},\mathsf{D}_{\mathsf{f}},\mathsf{D}_{\mathsf{s}})\operatorname{Wig}[u],$

Theorem [C. Mele, A. O.]

Let *P* be a linear PDO with polynomial coefficients and let Ω , Σ , Ω_1 , Σ_1 be as before. *P* is S_{Ω}^{Σ} -regular $\iff \widetilde{P}$ is $S_{\Omega_1}^{\Sigma_1}$ -regular.

More general transformations ban be used instead of Wigner type transform, namely, transforms in the Cohen class

$$Q[u] = \kappa \star Wig[u]$$

for kernels κ of the kind

$$\kappa(\mathbf{x},\mathbf{y}) = \mathcal{F}_{\substack{\xi \to \mathbf{x} \\ \eta \to \mathbf{y}}}^{-1} \Big[\exp \Big(-i \sum_{j=1}^{N} p_j(\xi_j, \eta_j) \Big) \Big],$$

where p_j , j = 1, ..., N are polynomials in \mathbb{R}^2 of any order, with coefficients in \mathbb{R} .

Sac

 $0 \neq p(z,\zeta) = \sum c_{lphaeta} z^{lpha} \zeta^{eta}, \quad c_{lphaeta} \in \mathbb{C}, \quad z,\zeta \in \mathbb{R}^N.$ $|\alpha + \beta| \leq m$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$$0\neq p(z,\zeta)=\sum_{|\alpha+\beta|\leq m}c_{\alpha\beta}z^{\alpha}\zeta^{\beta},\quad c_{\alpha\beta}\in\mathbb{C},\quad z,\zeta\in\mathbb{R}^{N}.$$

The following operators are $\mathbb{S}_{\Omega}^{\Sigma}\text{-regular}$ for every Ω and $\Sigma\text{:}$

$$\begin{split} P_{1} &= \sum_{|\alpha+\beta| \leq m} c_{\alpha\beta} \left(\frac{x_{1}+y_{1}}{2} + R_{1}(D_{x_{1}}+D_{y_{1}}) \right)^{\alpha_{1}} \dots \left(\frac{x_{N}+y_{N}}{2} + R_{N}(D_{x_{N}}+D_{y_{N}}) \right)^{\alpha_{N}} \\ &\qquad \left(\frac{D_{x_{1}}-D_{y_{1}}}{2} + T_{1}(y_{1}-x_{1}) \right)^{\beta_{1}} \dots \left(\frac{D_{x_{N}}-D_{y_{N}}}{2} + T_{N}(y_{N}-x_{N}) \right)^{\beta_{N}}; \\ P_{2} &= \sum_{|\alpha+\beta| \leq m} c_{\alpha\beta} \left(x_{1} - \frac{D_{y_{1}}}{2} - R_{1}(D_{x_{1}}) \right)^{\alpha_{1}} \dots \left(x_{N} - \frac{D_{y_{N}}}{2} - R_{N}(D_{x_{N}}) \right)^{\alpha_{N}} \\ &\qquad \left(x_{1} + \frac{D_{y_{1}}}{2} - R_{1}(D_{x_{1}}) \right)^{\beta_{1}} \dots \left(x_{N} + \frac{D_{y_{N}}}{2} - R_{N}(D_{x_{N}}) \right)^{\beta_{N}}; \\ P_{3} &= \sum_{|\alpha+\beta| \leq m} c_{\alpha\beta} \left(\frac{D_{x_{1}}}{2} + y_{1} - T_{1}(D_{y_{1}}) \right)^{\alpha_{1}} \dots \left(\frac{D_{x_{N}}}{2} - y_{N} + T_{N}(D_{y_{N}}) \right)^{\alpha_{N}} \\ &\qquad \left(\frac{D_{x_{1}}}{2} - y_{1} + T_{1}(D_{y_{1}}) \right)^{\beta_{1}} \dots \left(\frac{D_{x_{N}}}{2} - y_{N} + T_{N}(D_{y_{N}}) \right)^{\beta_{N}}. \end{split}$$

where R_i and T_j are arbitrary polynomials with real coefficients.

Examples

The operators in \mathbb{R}^2

$$\left(D_x+\frac{1}{2}y\right)^2+\left(D_y-\frac{1}{2}x\right)^2$$

(Twisted Laplacian)

> < 三 > < 三 >

3

are $S_{\omega_1 \oplus \omega_2}^{\sigma_1 \oplus \sigma_2}$ -regular, for every weight

functions ω_1 , ω_2 , σ_1 , σ_2 .

Examples

The operators in \mathbb{R}^2

$$\left(D_x+\frac{1}{2}y\right)^2+\left(D_y-\frac{1}{2}x\right)^2$$

(Twisted Laplacian)

$$\left(D_x+\frac{1}{2}y\right)^{2h}+\left(D_y-\frac{1}{2}x\right)^{2k}$$
 with

with
$$h, k \in \mathbb{N}$$

3

are $S_{\omega_1 \oplus \omega_2}^{\sigma_1 \oplus \sigma_2}$ -regular, for every weight functions $\omega_1, \omega_2, \sigma_1, \sigma_2$.

Examples

The operators in \mathbb{R}^2

$$\left(D_x + \frac{1}{2}y\right)^2 + \left(D_y - \frac{1}{2}x\right)^2$$
 (Twisted Laplacian)

$$\left(D_x+\frac{1}{2}y\right)^{2h}+\left(D_y-\frac{1}{2}x\right)^{2k}$$
 with $h,k\in\mathbb{N}$

$$\left(x-\frac{1}{2}D_y+Q(D_x)\right)^2+\left(y+\frac{1}{2}D_x+R(D_y)\right)^2$$

$$(x - D_y + Q(D_x))^2 + (y + R(D_y))^2$$

for arbitrary differential operators $Q(D_x)$ and $R(D_y)$ with real constant coefficients, are $S_{\omega_1 \oplus \omega_2}^{\sigma_1 \oplus \sigma_2}$ -regular, for every weight functions $\omega_1, \omega_2, \sigma_1, \sigma_2$.