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Sets of periods: Sharkovsky’s theorem

Given a continuous map f : X → X on a topological space X , a
point x ∈ X is said to be periodic of period p ∈ N if f p(x) = x
and f q(x) ̸= x for any q ∈ N with q < p.

Sharkovsky’s theorem (1964)
Let f : I → I, continuous on an interval I ⊂ R, and consider the
following total order in N:

3 ≺ 5 ≺ 7 ≺ . . . 2n+1 . . .
3. 2 ≺ 5. 2 ≺ 7. 2 ≺ . . . (2n+1). 2 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

3. 2k ≺ 5. 2k ≺ 7. 2k ≺ . . . (2n+1). 2k . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 2n . . . ≺ 4 ≺ 2 ≺ 1

If f has periodic points of period m and m ≺ n, then f has
periodic points of period n.
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Sets of periods: Sharkovsky’s theorem

Moreover this order is optimal for interval maps, in the sense
that, if m ≺ n, one can find a continuous map f : [0,1] → [0,1]
such that f has n-periodic points, but it doesn’t admit any
m-periodic point.

Oleksandr Mykolaiovych Sharkovsky
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Framework: Chaotic linear dynamics

Our framework will consist on linear maps (operators)
T : X → X on an infinite-dimensional and separable complex
Banach space. An operator T : X → X on X is called
topologically transitive if, for any U,V ⊂ X non-empty open sets
there exists n ∈ N such that T n(U) ∩ V ̸= ∅.

Within this context, transitivity is equivalent to hypercyclicity,
that is, the existence of vectors x ∈ X whose orbit under T is
dense in X .

The operator T is said to be Devaney chaotic if it is hypercyclic
and admits a dense set of periodic points.
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Sets of periods

The set of periods for T : X → X is denoted by

P(T ) := {n ∈ N : n is a period for T}.

The set of periodic points is strongly related to the set of
eigenvectors whose eigenvalue is an n-root of the unity.
Actually, (Bonet, Martı́nez-Giménez, P. (2003)) we know that
the set of periodic points of T is the vector space

span{x ∈ X / ∃n ∈ N , ∃λ ∈ C : λn = 1 , Tx = λx}.
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Roots of unity

Given n ∈ N and λ ∈ C we say that λ is a primitive n-th root of 1
if λn = 1 and λm ̸= 1 for 1 ≤ m < n. We denote by

Λn := {λ ∈ C : λ is a primitive n-th root of 1}

⊂ Γn := {λ ∈ C : λn = 1}.

For λ in the unit circle T and ε > 0, we denote by Iλ,ε the open
arc of the unit circle of length ε centered at λ.
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Necessary conditions
For convenience, we only consider periodic vectors x ∈ X \ {0}.

K. Ali Akbar, V. Kannan, S. Gopal, and P. Chiranjeevi (2009)
If A ⊂ N is a set of periods for an operator on a Banach space
X , then A contains the least common multiple (lcm) of each pair
of elements in A.

Proof: Suppose that A = P(T ) for some operator T ∈ L(X ).
Let n,m ∈ A, p = lcm(m,n), and x1, x2 ∈ X be n and m periodic
vectors, respectively. These vectors can be expressed as a
linear combination of eigenvectors corresponding to n-roots
and m-roots of unity (BMP03):

x1 =
kn∑

i=1

αiyi , αi ̸= 0, i = 1, . . . , kn,

x2 =
km∑
j=1

βjzj , βj ̸= 0, j = 1, . . . , km.
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Necessary conditions

Proof (continued):
Let λi ∈ Γn be the eigenvalue of yi , i = 1, . . . kn, and let λ′

j ∈ Γm
be the eigenvalue of zj , j = 1, . . . , km.

We have that there are ni ,mj ∈ N, such that λi ∈ Λni and
λ′

j ∈ Λmj , for i = 1, . . . , kn, j = 1, . . . , km.

Since x1 is n-periodic and x2 is m-periodic, we get
n = lcm(n1, . . . ,nkn) and m = lcm(m1, . . . ,mkm). We define
x :=

∑kn
i=1 yi +

∑km
j=1 zj , where we identify yi = zj if λi = λ′

j for
some i and j . Finally, since p = lcm(n1, . . . ,nkn ,m1, . . . ,mkm),
we deduce that x is a p-periodic vector for T and p ∈ A.
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Sufficient conditions on the Hilbert space

Now we concentrate on the existence of chaotic operators on
the Hilbert space with prescribed set of periods.

J.A. Conejero, F. Martı́nez-Giménez, A. P. and F. Rodenas
If A ⊂ N is infinite and contains the lcm of each pair of elements
in A, then there exists a chaotic operator T ∈ L(ℓ2) such that
P(T ) = A.

Proof: 1st step (Selection of suitable prime numbers):
Fix θ ∈]1,4/3[\Q. We select a non decreasing sequence (nm)m
of positive integers such that

lim
m

nm

m
= θ/2 and

m
2

< nm <
2m
3

for all m > 4.
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Selection of prime numbers
Proof 1st step (continued):
By the Prime Number Theorem and the fact that (nm)m is non
decreasing and unbounded, for every ε > 0, there is mε ∈ N
such that, if m ≥ mε, then there is a prime number p satisfying
nm < p < (1 + ε)nm.

Applying this result to (1/k)k , k ∈ N, we get an increasing
sequence of positive integers (mk )k , with m1 > 4, such that for
each k ∈ N and for m ∈ N with mk ≤ m < mk+1, there exists a
prime number pk ,m satisfying

nm < pk ,m < (1 +
1
k
)nm.

Now define

pm :=

{
1 if 1 ≤ m < m2
pk ,m if mk ≤ m < mk+1 for k ≥ 2
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Selection of prime numbers

Proof 1st step (continued):
We get a sequence of integers (pm)m, with pm prime for
m ≥ m2, such that limm

pm
m = θ/2.

We observe that pm and m are coprime for m ≥ m2. Otherwise
either pm = m or pm ≤ m/2, which yields a contradiction with
the selection of (nm)m.

This shows that ηm := e2πi pm
m ∈ Λm, m ∈ N. Moreover,

limm ηm = eπθi ∈ T \ eiπQ.

For convenience, sort positive integers not in A in increasing
order and denote them as

Ac := N \ A = {j1 < j2 < . . . } .
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Selection of a Cantor set

Proof: 2nd step (Selection of a suitable Cantor set):

Claim (proof not included): There exists a sequence {Uk}k
with the following properties:
(1) ∪∞

k=1Uk consists of a countable union of pairwise disjoint
open arcs in T, not sharing endpoints, where all endpoints have
the form eiϕπ with ϕ ∈]0,2[\Q,

(2) ∪∞
k=1Λjk ⊂ ∪∞

k=1Uk ,
(3) ηm ̸∈ ∪∞

k=1Uk for m ̸= jk and k ∈ N.

Define now U := ∪∞
k=1Uk , which is an open subset of T and, by

construction, T \ U does not have isolated points (i.e., it is a
perfect set) and the primitive roots of the unity ηm ∈ T \ U if and
only if m ∈ A.

Alfred Peris Wild dynamics and periods for operators



Selection of a Cantor set

Proof: 2nd step (Selection of a suitable Cantor set):

Claim (proof not included): There exists a sequence {Uk}k
with the following properties:
(1) ∪∞

k=1Uk consists of a countable union of pairwise disjoint
open arcs in T, not sharing endpoints, where all endpoints have
the form eiϕπ with ϕ ∈]0,2[\Q,
(2) ∪∞

k=1Λjk ⊂ ∪∞
k=1Uk ,

(3) ηm ̸∈ ∪∞
k=1Uk for m ̸= jk and k ∈ N.

Define now U := ∪∞
k=1Uk , which is an open subset of T and, by

construction, T \ U does not have isolated points (i.e., it is a
perfect set) and the primitive roots of the unity ηm ∈ T \ U if and
only if m ∈ A.

Alfred Peris Wild dynamics and periods for operators



Selection of a Cantor set

Proof: 2nd step (Selection of a suitable Cantor set):

Claim (proof not included): There exists a sequence {Uk}k
with the following properties:
(1) ∪∞

k=1Uk consists of a countable union of pairwise disjoint
open arcs in T, not sharing endpoints, where all endpoints have
the form eiϕπ with ϕ ∈]0,2[\Q,
(2) ∪∞

k=1Λjk ⊂ ∪∞
k=1Uk ,

(3) ηm ̸∈ ∪∞
k=1Uk for m ̸= jk and k ∈ N.

Define now U := ∪∞
k=1Uk , which is an open subset of T and, by

construction, T \ U does not have isolated points (i.e., it is a
perfect set) and the primitive roots of the unity ηm ∈ T \ U if and
only if m ∈ A.

Alfred Peris Wild dynamics and periods for operators



Selection of a Cantor set

Proof: 2nd step (Selection of a suitable Cantor set):

Claim (proof not included): There exists a sequence {Uk}k
with the following properties:
(1) ∪∞

k=1Uk consists of a countable union of pairwise disjoint
open arcs in T, not sharing endpoints, where all endpoints have
the form eiϕπ with ϕ ∈]0,2[\Q,
(2) ∪∞

k=1Λjk ⊂ ∪∞
k=1Uk ,

(3) ηm ̸∈ ∪∞
k=1Uk for m ̸= jk and k ∈ N.

Define now U := ∪∞
k=1Uk , which is an open subset of T and, by

construction, T \ U does not have isolated points (i.e., it is a
perfect set) and the primitive roots of the unity ηm ∈ T \ U if and
only if m ∈ A.

Alfred Peris Wild dynamics and periods for operators



Kalisch operator

Proof: 3rd step (Kalisch operator):

To finish our proof we will need the Kalisch operator, that was
used for the first time by Bayart and Grivaux (2005) in the
context of chaotic properties in linear dynamics. More precisely,
let K : L2[0,2π] → L2[0,2π] be defined as

Kf (θ) = eiθf (θ)−
∫ θ

0
ieit f (t)dt , θ ∈ [0,2π].

It is well known (and easy to see) that, for any λ ∈ T \ {1},
λ = eiβ with β ∈]0,2π[, we have

ker(K − λI) = span(fλ), where fλ := 1[β,2π].
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Kalisch operator

Proof: 3rd step (Continued):

W.l.o.g. we suppose that 1 ∈ U. Otherwise a suitable rotation of
K does the job. We consider the Hilbert space
H := span{fλ ; λ ∈ T \ U}, which is K -invariant.

Since T \ U is a compact perfect set and, by continuity of the
map λ 7→ fλ, the set of eigenvectors of T := K |H associated to
roots of unity is dense in H, T is chaotic (see, e.g., the book of
Bayart and Matheron (2009)).

Moreover, σp(T ) = σ(T ) = T \ U. Given m ∈ A, we have that
ηm ∈ Λm ∩ σp(T ). Since all separable infinite dimensional
Hilbert spaces are equivalent, we replace H by ℓ2 from now on.
Let x ∈ ℓ2 be an eigenvector of T associated to ηm, then x is
m-periodic, and A ⊆ P(T ).
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Kalisch operator

Proof: 3rd step (Continued):

On the other hand, if m ∈ P(T ), proceeding as in part of the
necessary conditions, we find a finite family x1, . . . , xk ∈ ℓ2 of
eigenvectors of T such that if λ1, . . . , λk are the respective
associated eigenvalues and m1, . . . ,mk ∈ N are so that
xi ∈ Λmi , i = 1, . . . , k , then m = lcm(m1, . . . ,mk ).

If mi ∈ A, i = 1, . . . , k , then the hypothesis on A imply that
m ∈ A. If there was some mj /∈ A, then λj ∈ U ∩ σp(T ) which is
a contradiction.
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