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Joris’s theorem

Theorem (Joris 1982)

Let f : M → R be a function. If f2 and f3 are C∞, then f is C∞.

Remarks

• M is a C∞-manifold. It is enough to consider M = R (Boman 1967).

• f (continuous) can take values in C or any complex function algebra

(Duncan, Krantz, Parks 1985).

• The powers 2 and 3 can be replaced by any coprime p and q.

• More general nonlinear conditions: e.g. if f2 + f3 ∈ C∞ and

fp ∈ C∞ then f ∈ C∞.

Division?

This is a kind of division result ( f
3

f2 = f). There is a way to turn this

naive approach into a rigorous proof (fedja on MathOverflow). This

method works also for other regularity classes.
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Joris’s theorem

Joris’s theorem for other regularity classes

• holomorphic

• real analytic

• polynomial

• Nash (C∞ semialgebraic)

• ultradifferentiable classes, quasianalytic and non-quasianalytic

Key for the proof

almost analytic extension and holomorphic approximation
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Ultradifferentiable classes

For M = (Mk)k≥0 a positive sequence, K ⊆cp Rd, and ρ > 0,

∥f∥MK,ρ := sup
α∈Nd

∥f (α)∥K
ρ|α|M|α|

.

If M is a totally ordered family of positive sequences and U ⊆ Rd is open,

E{M}(U) =
{
f ∈ C∞(U) : ∀K ⊆cp U ∃M ∈ M ∃ρ > 0 : ∥f∥MK,ρ < ∞

}
E(M)(U) =

{
f ∈ C∞(U) : ∀K ⊆cp U ∀M ∈ M ∀ρ > 0 : ∥f∥MK,ρ < ∞

}
E{M} = Roumieu , E(M) = Beurling , E [M] = either case

Examples

• Denjoy–Carleman classes (e.g. E{(k!s)} = Gevrey Gs)

• Braun–Meise–Taylor classes (e.g. ω(t) = max{0, (log t)s})
• intersection of all non-quasianalytic Gevrey classes



Admissible weights

Assumptions

(1) Each M ∈ M is log-convex and m = (Mk

k! ) fulfills m0 = 1 ≤ m1 and

m
1/k
k → ∞.

Associated functions: hm(t) := infk∈N mkt
k for t > 0 and hm(0) := 0.
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k for t > 0 and hm(0) := 0.

hm(t) is

• increasing,

• continuous,

• positive on (0,∞),

• 1 for large t,

• ∞-flat at 0.

t

hm(t)

0

1

1
m1

Examples

h(1)|[0,1) ≡ 0, h(log(k+e)δk)(t) ∼ e−e
1

t1/δ , h(k!s)(t) ∼ e
− 1

t1/s
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Admissible weight functions

Weight functions

A continuous increasing function ω : [0,∞) → [0,∞) is a weight

function if

• ω(2t) = O(ω(t)) as t → ∞,

• ω(t) = o(t) as t → ∞,

• log(t) = o(ω(t)) as t → ∞,

• φ := ω ◦ exp is convex.

Facts

• Braun–Meise–Taylor classes can be represented by E [W], where

W = (Wx)x>0 and W x
k = exp( 1xφ

∗(xk)).

• W is equivalent to an admissible weight if and only if ω is equivalent

to a concave weight function.
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Ultradifferentiable Joris’s theorem

Theorem (Thilliez 2020)

Let M be such that m is log-convex and supj,k(
Mj+k

MjMk
)

1
j+k < ∞.

Let f : R → C be a function. If fp, fq ∈ E{M}(R) with gcd(p, q) = 1,

then f ∈ E{M}(R).

Theorem (Nenning, R., Schindl 2021-22)

Let M be admissible. Let f : Rd → C be a function.

If fp, fq ∈ E [M](Rd) with gcd(p, q) = 1, then f ∈ E [M](Rd).

Uniformity: f 7→ (fp, fq) is an injective map T : CRd → CRd × CRd

.

Its inverse S : T (CRd

) → CRd

takes sets bounded in

E [M](Rd)× E [M](Rd) to sets bounded in E [M](Rd).

Theorem (Nenning, R., Schindl 2021-22)

In the Braun–Meise–Taylor case, the result holds if and only if ω is

equivalent to a concave weight function.
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Almost holomorphic extension

Theorem (Fürdös, Nenning, R. Schindl 2020; Dyn’kin 70ies)

Let M be admissible. f ∈ E [M](R) if and only if for each compact

interval I ⊆ R there exist M ∈ M, ρ > 0, and (resp. for all M ∈ M and

ρ > 0 there exists) an extension F ∈ C1
c (C) of f |I such that

|∂zF (z)| = | 12 (∂x + i∂y)F (z)| ≤ Chm(ρ d(z, I)), z ∈ C.

Remark

If a class admits a description by almost holomorphic extension, then it

has good stability properties.

Examples

h(1)|[0,1) ≡ 0, h(log(k+e)δk)(t) ∼ e−e
1

t1/δ , h(k!s)(t) ∼ e
− 1

t1/s



Holomorphic approximation

In the following we focus on the Roumieu case.

For ε > 0 let Ωε be the interior of the ellipse

with vertices ± cosh(ε) and ±i sinh(ε).
cosh(ε)

i sinh(ε)

|
1

|
−1

Theorem (HA)

Let M be admissible.

1. If f ∈ E{M}([−1, 1]), then there exist fε ∈ H(Ωε) ∩ C0(Ωε) and

M ∈ M such that

∥fε∥Ωε
≤ K, ∥f − fε∥[−1,1] ≤ c1hm(c2ε), for all small ε > 0. (†)

2. Let f : [−1, 1] → C. If there exist fε ∈ H(Ωε) ∩ C0(Ωε) and

M ∈ M such that (†), then f ∈ E{M}((−1, 1)).
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The strategy

Let f : [−1, 1] → C such that g := f2, h := f3 ∈ E{M}([−1, 1]).

Show f ∈ E{M}((−1, 1)).

Step 0: By HA1, there are gε, hε ∈ H(Ωε) ∩ C0(Ωε) and M ∈ M s.t.

∥gε∥Ωε
≤ K, ∥g − gε∥[−1,1] ≤ c1hm(c2ε),

∥hε∥Ωε
≤ K, ∥h− hε∥[−1,1] ≤ c1hm(c2ε), for all small ε > 0.

Step 1: Divide: for suitable rε > 0, φε ∈ C∞
c (Ωε), φε|Ωε/2

= 1,

uε := φε
gεhε

max{|gε|, rε}2
(

= φε
hε

gε
if |gε| > rε

)
Uniform approximation: ∥uε∥Ωε/2

≲ 1, ∥f − uε∥[−1,1] ≲ r
1/2
ε .

Step 2: Modify uε to get a holomorphic approximation fε.

Step 3: Apply HA2 after showing that for some M′ ∈ M

∥fε∥Ωε
≤ L, ∥f − fε∥[−1,1] ≤ d1hm′(d2ε), for all small ε > 0.
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From one to many variables

• Polarization inequality: For dkvf(x) := ( ∂
∂t )

kf(x+ tv)|t=0,

sup
∥v∥≤1

|dkvf(x)| ≤ ∥f (k)(x)∥Lk(Rd,C) ≤ (2e)k sup
∥v∥≤1

|dkvf(x)|.

• Uniform unidirectional holomorphic approximation:

f : Rd → C is of class E{M} if and only if the functions

fx,v(t) := f(x+ tv), t ∈ [−1, 1], x ∈ Rd, v ∈ Sd−1,

admit uniform holomorphic approximation, i.e., there exist

fx,v,ε ∈ H(Ωε) ∩ C0(Ωε) and M ∈ M such that

∥fx,v,ε∥Ωε
≤ K, ∥fx,v − fx,v,ε∥[−1,1] ≤ c1hm(c2ε)

uniformly for all x, v and all small ε > 0.

Consequence: The result holds on arbitrary infinite dimensional Banach

spaces and, more generally, on all convenient vector spaces.
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More general nonlinear conditions

Let f : (Rd, 0) → (K, 0) be a continuous germ (K is R or C). We know:

Φ ◦ f ∈ E [M] =⇒ f ∈ E [M] (P[M])

if Φ(t) = (tp, tq) with gcd(p, q) = 1 and M admissible.

Problem

Characterize the analytic germs Φ : (K, 0) → (Kn, 0) with (P[M]).

Necessary condition

Write Φ(t) =
∑

akt
nk , where ak ∈ Kn \ {0} and {n1, n2, . . .} ⊆ N≥1

is the support of Φ(t).

If Φ has property (P[M]), then gcd(n1, n2, . . .) = 1.

In fact, if nk = pℓk for all k, then Ψ(t) :=
∑

akt
ℓk is convergent and

Φ(t) = Ψ(tp). There is a continuous germ f ̸∈ C1 with Φ ◦ f analytic.



More general nonlinear conditions

Let f : (Rd, 0) → (K, 0) be a continuous germ (K is R or C). We know:

Φ ◦ f ∈ E [M] =⇒ f ∈ E [M] (P[M])

if Φ(t) = (tp, tq) with gcd(p, q) = 1 and M admissible.

Problem

Characterize the analytic germs Φ : (K, 0) → (Kn, 0) with (P[M]).

Necessary condition

Write Φ(t) =
∑

akt
nk , where ak ∈ Kn \ {0} and {n1, n2, . . .} ⊆ N≥1

is the support of Φ(t).

If Φ has property (P[M]), then gcd(n1, n2, . . .) = 1.

In fact, if nk = pℓk for all k, then Ψ(t) :=
∑

akt
ℓk is convergent and

Φ(t) = Ψ(tp). There is a continuous germ f ̸∈ C1 with Φ ◦ f analytic.



More general nonlinear conditions

Let f : (Rd, 0) → (K, 0) be a continuous germ (K is R or C). We know:

Φ ◦ f ∈ E [M] =⇒ f ∈ E [M] (P[M])

if Φ(t) = (tp, tq) with gcd(p, q) = 1 and M admissible.

Problem

Characterize the analytic germs Φ : (K, 0) → (Kn, 0) with (P[M]).

Necessary condition

Write Φ(t) =
∑

akt
nk , where ak ∈ Kn \ {0} and {n1, n2, . . .} ⊆ N≥1

is the support of Φ(t).

If Φ has property (P[M]), then gcd(n1, n2, . . .) = 1.

In fact, if nk = pℓk for all k, then Ψ(t) :=
∑

akt
ℓk is convergent and

Φ(t) = Ψ(tp). There is a continuous germ f ̸∈ C1 with Φ ◦ f analytic.



More general nonlinear conditions

We say that Φ,Ψ : (K, 0) → (Kn, 0) are equivalent if there are germs of

analytic diffeomorphisms u : (Kn, 0) → (Kn, 0) and v : (K, 0) → (K, 0)

such that u ◦ Φ ◦ v = Ψ.

Equivalent germs either both satisfy or do not satisfy (P[M]).

It is no restriction to assume that Φ1(t) = tp for some p ∈ N≥1.

Theorem (Nenning, R., Schindl 2021-22)

Let Φ : (K, 0) → (Kn, 0) be analytic, Φ1(t) = tp, and {n1, n2, . . .} the

support of the power series Φ(t). Let M be admissible. Then Φ has

property (P[M]) if and only if gcd(n1, n2, . . .) = 1.

Remark

In the C∞-setting this is due to (Joris & Preissmann 1987): Here Φ is

a C∞-germ (with complex Taylor series if K = C). Then

(∀f ∈ C0 : Φ ◦ f ∈ C∞ =⇒ f ∈ C∞) ⇐⇒ gcd(n1, n2, . . .) = 1.
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More general nonlinear conditions

Idea of the proof

We may assume that p ≥ 2 and n = 2: there are γi ∈ R such that the

support of (tp, φ(t) := γ2Φ2(t) + · · ·+ γnΦn(t)) has gcd = 1.

Show that there is q ∈ N≥1 and analytic germs αj at 0 such that

t1+pq =

p−1∑
j=0

αj(t
p)φ(t)j .

Thus we may apply the result for Φ(t) = (tp, t1+pq).



Remarks

Uniformity

In the scope of the theorem, the map Φ ◦ f 7→ f takes bounded sets in

E [M] to bounded sets in E [M].

Admissibility of M is “close to necessary”

(P[M]) implies that E [M] is inverse-closed.

If g is a continuous germ at 0 ∈ R with g(0) = 1, then f := 1/g and

h := f − 1 are continuous germs and h(0) = 0. Let

φ(t) = 1
1+t − 1 =

∑
k≥1(−1)ktk. For any germ Φ which has φ as

component the support satisfies gcd = 1. If g is E [M] then

φ ◦ h = g − 1 is E [M]. By the theorem, h and thus f = 1/g is E [M].

In particular, if E [ω] satisfies P[ω] for all Φ whose support has gcd = 1,

then ω is concave (up to equivalence of weight functions).
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Examples & Limitations

Examples

• f2 + f3 ∈ E [M] and fp ∈ E [M] imply f ∈ E [M].

If the target is not a complex function algebra:

• In a Banach algebra with a non-zero nilpotent element x of order 2,

f(t) :=
{ x if t∈Q,

0 if t ̸∈Q.

}
is discontinuous, but f2 = f3 = 0.

• Consider the algebra of all A =
(
a b
0 c

)
∈ R2×2 with ∥ · ∥2-norm.

If a(t) := e−
1
t2 , a(0) := 0, and b(t) := |t| for t ∈ R, then

f :=
(
a b
0 a

)
∈ C0 \ C1, but f2 =

(
a2 2ab
0 a2

)
and f3 =

(
a3 3a2b
0 a3

)
are C∞.

• Joris’s Theorem is wrong for quaternion valued functions.

H =
{(

z w
−w z

)
: z, w ∈ C

}
. There is f(t) :=

( 0 w(t)
−w(t) 0

)
∈ C1 \ C2

such that f2 = −|w|2
(
1 0
0 1

)
and f3 = |w|2

(
0 −w
w 0

)
are C∞.
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