UNIFORMLY ERGODIC MEASURES ON LOCALLY COMPACT GROUPS

Alberto Rodríguez Arenas

Joint work with Jorge Galindo and Enrique Jordá

Valladolid June 2022 Workshop on Functional and Complex Analysis

E is a Banach space.

 $T: E \longrightarrow E$ a continuous and linear operator.

Iterates:
$$T^n = T \circ \stackrel{\text{n-fold}}{\cdots} \circ T$$

Cesàro means: $T_{[n]} = \frac{1}{n} \sum_{m=1}^n T^m$

T is called **power bounded** if the set $\sup_{n \in \mathbb{N}} ||T^n|| < \infty$. *T* is called **(uniformly) mean ergodic** when $(T_{[n]})_n$ converges in the strong operator topology (resp. uniformly on bounded sets). G topological (locally compact) group. $C_0(G)$ continuous functions vanishing at infinity. $M(G) = C_0(G)^*$

$$\langle \mu, f \rangle = \int_{\mathcal{G}} f \, d\mu.$$

G topological (locally compact) group. $C_0(G)$ continuous functions vanishing at infinity. $M(G) = C_0(G)^*$

$$\langle \mu, f \rangle = \int_{\mathcal{G}} f \, d\mu.$$

 $\mu \in M(G), \mu \ge 0 \Rightarrow ||\mu|| = \mu(G).$ μ probability measure : $\iff \mu \ge 0, \ \mu(G) = 1.$ Haar measure: m_G . G topological (locally compact) group. $C_0(G)$ continuous functions vanishing at infinity. $M(G) = C_0(G)^*$

$$\langle \mu, f \rangle = \int_{\mathcal{G}} f \, d\mu.$$

$$\mu \in M(G), \mu \ge 0 \Rightarrow \|\mu\| = \mu(G).$$

 μ probability measure : $\iff \mu \ge 0, \ \mu(G) = 1.$
Haar measure: $m_G.$
 L_p spaces:

$$L_p(G) = \{f : \|f\|_p = \left(\int_G |f|^p dm_G\right)^{1/p} < \infty\}.$$

Convolution by a probability measure μ :

$$(\mu * f)(s) = \int_{\mathcal{G}} f(x^{-1}s) d\mu(x), \quad f \in L_p(\mathcal{G}), s \in \mathcal{G}$$

Convolution operator: $\lambda_p(\mu) : L_p(G) \longrightarrow L_p(G)$,

$$[\lambda_p(\mu)](f) = \mu * f.$$

 μ probability measure.

Theorem (Galindo, Jordá)

G amenable, 1 $<math>\lambda_p(\mu)$ mean ergodic and power bounded.

Theorem (Galindo, Jordá)

G compact, $\lambda_1(\mu)$ mean ergodic and power bounded.

 μ probability measure.

Theorem (Galindo, Jordá)

G amenable, 1 $<math>\lambda_p(\mu)$ mean ergodic and power bounded.

Theorem (Galindo, Jordá)

G compact, $\lambda_1(\mu)$ mean ergodic and power bounded.

Theorem (Galindo, Jordá)

G Abelian, 1 $<math>\lambda_p(\mu)$ uniformly mean ergodic $\iff 1$ is isolated in $\sigma(\lambda_p(\mu))$.

Theorem (Galindo, Jordá)

G Abelian and compact, $\lambda_1(\mu)$ uniformly mean ergodic $\iff 1$ is isolated in $\sigma(\lambda_1(\mu))$. \mathcal{S}_{μ} support of $\mu.$

Theorem (Galindo, Jordá)

 $\lambda_1(\mu)$ mean ergodic $\Rightarrow \overline{\langle S_\mu \rangle}$ is compact.

$$S_{\mu}$$
 support of μ .

 $\lambda_1(\mu)$ mean ergodic $\Rightarrow \overline{\langle S_\mu \rangle}$ is compact.

Theorem (Galindo, Jordá)

G Abelian. $\frac{\lambda_1(\mu)}{\langle S_{\mu} \rangle}$ uniformly mean ergodic $\iff 1$ is isolated in $\sigma(\lambda_1(\mu))$ and $\overline{\langle S_{\mu} \rangle}$ compact.

$$L_1^0(G) = \{f \in L_1(G) : \int_G f \, dm_G = 0\}$$

 $L_1^0(G)$ is invariant by $\lambda_1(\mu)$.

$$L_1^0(G) = \{ f \in L_1(G) : \int_G f \, dm_G = 0 \}$$

 $L_1^0(G)$ is invariant by $\lambda_1(\mu)$.

Define $\lambda_1^0(\mu) : L_1^0(G) \longrightarrow L_1^0(G)$ by $\lambda_1^0(\mu) = \lambda_1(\mu)|_{L_1^0(G)}$.

$$L_1^0(G) = \{ f \in L_1(G) : \int_G f \, dm_G = 0 \}$$

 $L_1^0(G)$ is invariant by $\lambda_1(\mu)$.

Define
$$\lambda_1^0(\mu) : L_1^0(G) \longrightarrow L_1^0(G)$$
 by $\lambda_1^0(\mu) = \lambda_1(\mu)|_{L_1^0(G)}$.

Problem: The relation between the uniform mean ergodicity of $\lambda_1(\mu)$ and $\lambda_1^0(\mu)$.

G Abelian, μ probability measure. TFAE

- (i) $\lambda_1(\mu)$ is uniformly mean ergodic.
- (ii) $\lambda_1^0(\mu)$ is uniformly mean ergodic.
- (iii) $\overline{\langle S_{\mu} \rangle}$ is compact and 1 isolated in $\sigma(\lambda_1(\mu))$.

G Abelian, μ probability measure. TFAE

- (i) $\lambda_1(\mu)$ is uniformly mean ergodic.
- (ii) $\lambda_1^0(\mu)$ is uniformly mean ergodic.
- (iii) $\overline{\langle S_{\mu} \rangle}$ is compact and 1 isolated in $\sigma(\lambda_1(\mu))$.

Sketch of the proof: (i) and (iii) are equivalent from earlier.

G Abelian, μ probability measure. TFAE

- (i) $\lambda_1(\mu)$ is uniformly mean ergodic.
- (ii) $\lambda_1^0(\mu)$ is uniformly mean ergodic.
- (iii) $\langle S_{\mu} \rangle$ is compact and 1 isolated in $\sigma(\lambda_1(\mu))$.

Sketch of the proof: (i) and (iii) are equivalent from earlier.

*If G is compact, $L_1(G) = L_1^0(G) \oplus \mathbb{C}$ since $f = (f - \int f) + \int f$. $L_1^0(G)$ invariant by $\lambda_1(\mu) \Rightarrow \lambda_1(\mu) = \lambda_1^0(\mu) \oplus I$. Done

G Abelian, μ probability measure. TFAE

- (i) $\lambda_1(\mu)$ is uniformly mean ergodic.
- (ii) $\lambda_1^0(\mu)$ is uniformly mean ergodic.
- (iii) $\overline{\langle S_{\mu} \rangle}$ is compact and 1 isolated in $\sigma(\lambda_1(\mu))$.

Sketch of the proof: (i) and (iii) are equivalent from earlier.

*If G is compact, $L_1(G) = L_1^0(G) \oplus \mathbb{C}$ since $f = (f - \int f) + \int f$. $L_1^0(G)$ invariant by $\lambda_1(\mu) \Rightarrow \lambda_1(\mu) = \lambda_1^0(\mu) \oplus I$. Done

* *G* not compact. $\lambda_1^0(\mu)$ is uniformly mean ergodic $\Rightarrow 1$ isolated in $\sigma(\lambda_1^0(\mu)) \Rightarrow 1$ isolated in $\sigma(\lambda_1(\mu)) \Rightarrow \lambda_1(\mu)$ is uniformly mean ergodic

Definition

A probability measure $\mu \in M(G)$ is:

- (i) adapted if $\overline{\langle S_{\mu} \rangle} = G$
- (ii) strictly aperiodic if it is adapted and every normal subgroup satisfying $S_{\mu} \subseteq xN$ for some $x \in G$ is actually N = G.
- (iii) spread-out if μ^n is not singular for some $n \in \mathbb{N}$ (i.e. if there is $n \in \mathbb{N}$ such that there is no set $A \subseteq G$ with $\mu^n(A) = 1$ and $m_G(A) = 0$).

G compact $\Rightarrow \lambda_1(\mu)$ mean ergodic.

Theorem (Galindo, Jordá)

 $\lambda_1(\mu)$ mean ergodic $\Rightarrow \overline{\langle S_\mu \rangle}$ is compact.

G compact $\Rightarrow \lambda_1(\mu)$ mean ergodic.

Theorem (Galindo, Jordá)

 $\lambda_1(\mu)$ mean ergodic $\Rightarrow \overline{\langle S_\mu \rangle}$ is compact.

Corollary

 μ adapted $(\overline{\langle S_{\mu} \rangle} = G)$ $\lambda_1(\mu)$ mean ergodic \iff G compact.

Definition

A probability measure μ is

- (i) ergodic (by convolutions) if $\lim_{n} [\lambda_1^0(\mu)]_{[n]} f = 0$ for $f \in L_1^0(G)$.
- (ii) completely mixing if $\lim_{n} [\lambda_1^0(\mu)]^n f = 0$ for $f \in L_1^0(G)$.

Definition

A probability measure $\boldsymbol{\mu}$ is

- (i) ergodic (by convolutions) if $\lim_{n} [\lambda_1^0(\mu)]_{[n]} f = 0$ for $f \in L_1^0(G)$.
- (ii) completely mixing if $\lim_{n} [\lambda_1^0(\mu)]^n f = 0$ for $f \in L_1^0(G)$.

Definition

A probability measure μ is

- (i) uniformly ergodic if $\lim_{n} \|[\lambda_1^0(\mu)]_{[n]}\| = 0$.
- (ii) uniformly completely mixing if $\lim_{n} \|[\lambda_1^0(\mu)]^n\| = 0$.

$$\langle S_{\mu} \rangle$$
 compact $\Rightarrow \mu_{[n]} \longrightarrow m_{\overline{\langle S_{\mu} \rangle}}$ in $\sigma(M(G), C_0(G))$.

$$\langle S_{\mu} \rangle$$
 compact $\Rightarrow \mu_{[n]} \longrightarrow m_{\overline{\langle S_{\mu} \rangle}}$ in $\sigma(M(G), C_0(G))$.

 $\mu \text{ adapted} \Rightarrow \textit{G} = \overline{\langle \textit{S}_{\mu} \rangle} \Rightarrow \mu_{\textit{[n]}} \longrightarrow \textit{m}_{\textit{G}}$

$$\mu_{[n]} * f \longrightarrow m_G * f = \int_G f \, dm_G = 0, \quad f \in L^0_1(G)$$

$$(\mu \text{ adapted } \iff G = \overline{\langle S_{\mu} \rangle})$$

 $\mu \text{ ergodic} \Rightarrow \mu \text{ adapted}.$

G is compact or Abelian: μ adapted $\Rightarrow \mu$ ergodic.

$$(\mu \text{ adapted } \iff G = \overline{\langle S_{\mu} \rangle})$$

 μ ergodic $\Rightarrow \mu$ adapted. *G* is compact or Abelian: μ adapted $\Rightarrow \mu$ ergodic.

Corollary (Reminder)

 μ adapted $\lambda_1(\mu)$ mean ergodic \iff G compact. $(\mu \text{ adapted } \iff G = \overline{\langle S_{\mu} \rangle})$

 μ ergodic $\Rightarrow \mu$ adapted. *G* is compact or Abelian: μ adapted $\Rightarrow \mu$ ergodic.

Corollary (Reminder)

 μ adapted $\lambda_1(\mu)$ mean ergodic \iff G compact.

Example

G Abelian, noncompact, μ adapted. Then μ is ergodic but $\lambda_1(\mu)$ is not mean ergodic.

 $(\mu \text{ adapted } \iff G = \overline{\langle S_{\mu} \rangle})$

 μ ergodic $\Rightarrow \mu$ adapted. *G* is compact or Abelian: μ adapted $\Rightarrow \mu$ ergodic.

Corollary (Reminder)

 μ adapted $\lambda_1(\mu)$ mean ergodic \iff G compact.

Example

G Abelian, noncompact, μ adapted. Then μ is ergodic but $\lambda_1(\mu)$ is not mean ergodic.

Example

G Abelian, compact, μ not adapted. Then μ is not ergodic but $\lambda_1(\mu)$ is mean ergodic.

 μ completely mixing $\Rightarrow \mu$ strictly aperiodic. *G* is compact or Abelian: μ strictly aperiodic $\Rightarrow \mu$ completely mixing.

 μ completely mixing $\Rightarrow \mu$ strictly aperiodic. *G* is compact or Abelian: μ strictly aperiodic $\Rightarrow \mu$ completely mixing.

Question: μ ergodic and strictly aperiodic $\Rightarrow \mu$ completely mixing?

 μ completely mixing $\Rightarrow \mu$ strictly aperiodic. *G* is compact or Abelian: μ strictly aperiodic $\Rightarrow \mu$ completely mixing.

Question: μ ergodic and strictly aperiodic $\Rightarrow \mu$ completely mixing? True if:

- μ spread out (Glasner)
- G compact (Ito-Kawada)
- G is in [SIN] (Jaworski)
- μ^n and μ^{n+1} are not mutually singular for some $n \in \mathbb{N}$ (Foguel)

 μ completely mixing $\Rightarrow \mu$ strictly aperiodic. *G* is compact or Abelian: μ strictly aperiodic $\Rightarrow \mu$ completely mixing.

Question: μ ergodic and strictly aperiodic $\Rightarrow \mu$ completely mixing? True if:

- μ spread out (Glasner)
- G compact (Ito-Kawada)
- G is in [SIN] (Jaworski)
- μ^n and μ^{n+1} are not mutually singular for some $n \in \mathbb{N}$ (Foguel)

Question: μ uniformly ergodic and strictly aperiodic $\Rightarrow \mu$ uniformly completely mixing?

 $(\mu \text{ spread-out } \iff \exists n \in \mathbb{N} : \not\exists A \subseteq G \text{ with } \mu^n(A) = 1 \text{ and } m_G(A) = 0)$

Theorem (Galindo, Jordá, R.)

G Abelian and compact, μ adapted probability measure. μ uniformly ergodic $\iff \mu$ spread-out. $(\mu \text{ spread-out } \iff \exists n \in \mathbb{N} : \not\exists A \subseteq G \text{ with } \mu^n(A) = 1 \text{ and } m_G(A) = 0)$

Theorem (Galindo, Jordá, R.)

G Abelian and compact, μ adapted probability measure. μ uniformly ergodic $\iff \mu$ spread-out.

Sketch of the proof:

* μ spread-out $\Rightarrow \exists n : \mu^n = \mu_s + \mu_a$, $\mu_a = f \cdot m_G$, f > 0, μ_s singular and positive.

$$\|\lambda_1^0(\mu^n)-\lambda_1^0(\mu_{s})\|=\|\lambda_1^0(\mu_{s})\|<1.$$

 $\lambda_1^0(\mu_a)$ is a compact operator $\Rightarrow \lambda_1^0(\mu)$ is quasicompact. Done.

 $(\mu \text{ spread-out } \iff \exists n \in \mathbb{N} : \not\exists A \subseteq G \text{ with } \mu^n(A) = 1 \text{ and } m_G(A) = 0)$

Theorem (Galindo, Jordá, R.)

G Abelian and compact, μ adapted probability measure. μ uniformly ergodic $\iff \mu$ spread-out.

Sketch of the proof:

* μ spread-out $\Rightarrow \exists n : \mu^n = \mu_s + \mu_a$, $\mu_a = f \cdot m_G$, f > 0, μ_s singular and positive.

$$\|\lambda_1^0(\mu^n) - \lambda_1^0(\mu_s)\| = \|\lambda_1^0(\mu_s)\| < 1.$$

 $\lambda_1^0(\mu_a)$ is a compact operator $\Rightarrow \lambda_1^0(\mu)$ is quasicompact. Done.

* μ not spread-out \Rightarrow (technical stuff) \Rightarrow 1 not isolated in $\sigma(\lambda_1^0(\mu)) \Rightarrow \lambda_1^0(\mu)$ not uniformly mean ergodic.

(completely mixing $\iff [\lambda_1^0(\mu)]^n f \longrightarrow 0$ for $f \in L_1^0(G)$)

Theorem (Galindo, Jordá, R.)

G Abelian, μ adapted. TFAE

- (i) μ uniformly completely mixing.
- (ii) μ completely mixing and μ uniformly ergodic.
- (iii) μ strictly aperiodic and μ uniformly ergodic.

(completely mixing $\iff [\lambda_1^0(\mu)]^n f \longrightarrow 0$ for $f \in L_1^0(G)$)

Theorem (Galindo, Jordá, R.)

G Abelian, μ adapted. TFAE

(i) μ uniformly completely mixing.

(ii) μ completely mixing and μ uniformly ergodic.

(iii) μ strictly aperiodic and μ uniformly ergodic.

Theorem (Yosida-Kakutani)

 $T \in L(X)$ power bounded, quasicompact and without eigenvalues of modulus $1 \Rightarrow ||T^n|| \longrightarrow 0$.

(completely mixing $\iff [\lambda_1^0(\mu)]^n f \longrightarrow 0$ for $f \in L_1^0(G)$)

Theorem (Galindo, Jordá, R.)

G Abelian, μ adapted. TFAE

(i) μ uniformly completely mixing.

(ii) μ completely mixing and μ uniformly ergodic.

(iii) μ strictly aperiodic and μ uniformly ergodic.

Theorem (Yosida-Kakutani)

 $T \in L(X)$ power bounded, quasicompact and without eigenvalues of modulus $1 \Rightarrow ||T^n|| \longrightarrow 0$.

Sketch of the proof: μ completely mixing $\iff \mu$ strictly aperiodic

* μ uniformly ergodic $\Rightarrow \mu$ spread-out $\Rightarrow \lambda_1^0(\mu)$ is quasicompact.

* μ strictly aperiodic \Rightarrow (technical stuff) \Rightarrow no eigenvalues of modulus 1.

G Abelian and connected, μ adapted. μ uniformly completely mixing $\iff \mu$ uniformly ergodic $\iff \mu$ spread-out.

G Abelian and connected, μ adapted. μ uniformly completely mixing $\iff \mu$ uniformly ergodic $\iff \mu$ spread-out.

Idea of proof: μ uniformly ergodic $\Rightarrow \mu$ strictly aperiodic.

G Abelian and connected, μ adapted. μ uniformly completely mixing $\iff \mu$ uniformly ergodic $\iff \mu$ spread-out.

Idea of proof: μ uniformly ergodic $\Rightarrow \mu$ strictly aperiodic.

Example

G Abelian non-connected.

 $\exists H$ maximal proper normal open subgroup. Define $\mu = 1_{xH}m_G$ for some $x \notin H$.

By normality: $H \subsetneq \langle xH \rangle$.

By maximality: $\overline{\langle S_{\mu} \rangle} = \overline{\langle xH \rangle} = G \Rightarrow \mu$ adapted.

From its definition μ is spread-out.

 μ is adapted and spread-out, but it is not strictly aperiodic by construction.

 $\begin{array}{l} G \text{ Abelian, } \overline{\langle S_{\mu} \rangle} \text{ compact. TFAE} \\ (i) \quad \lambda_{1}(\mu) : L_{1}(G) \longrightarrow L_{1}(G) \text{ uniformly mean ergodic.} \\ (ii) \quad \lambda_{1}^{0}(\mu) : L_{1}^{0}(G) \longrightarrow L_{1}^{0}(G) \text{ uniformly mean ergodic.} \\ (iii) \quad \lambda_{1}(\mu) : L_{1}(\overline{\langle S_{\mu} \rangle}) \longrightarrow L_{1}(\overline{\langle S_{\mu} \rangle}) \text{ uniformly mean ergodic.} \\ (iv) \quad \lambda_{1}^{0}(\mu) : L_{1}^{0}(\overline{\langle S_{\mu} \rangle}) \longrightarrow L_{1}^{0}(\overline{\langle S_{\mu} \rangle}) \text{ uniformly mean ergodic.} \\ (v) \quad \mu \text{ uniformly ergodic on } M(\overline{\langle S_{\mu} \rangle}). \\ (vi) \quad \mu \text{ spread-out on } \overline{\langle S_{\mu} \rangle}. \end{array}$

 $\begin{array}{l} G \text{ Abelian, } \overline{\langle S_{\mu} \rangle} \text{ compact. TFAE} \\ (i) \quad \lambda_{1}(\mu) : L_{1}(G) \longrightarrow L_{1}(G) \text{ uniformly mean ergodic.} \\ (ii) \quad \lambda_{1}^{0}(\mu) : L_{1}^{0}(G) \longrightarrow L_{1}^{0}(G) \text{ uniformly mean ergodic.} \\ (iii) \quad \lambda_{1}(\mu) : L_{1}(\overline{\langle S_{\mu} \rangle}) \longrightarrow L_{1}(\overline{\langle S_{\mu} \rangle}) \text{ uniformly mean ergodic.} \\ (iv) \quad \lambda_{1}^{0}(\mu) : L_{1}^{0}(\overline{\langle S_{\mu} \rangle}) \longrightarrow L_{1}^{0}(\overline{\langle S_{\mu} \rangle}) \text{ uniformly mean ergodic.} \\ (v) \quad \mu \text{ uniformly ergodic on } M(\overline{\langle S_{\mu} \rangle}). \\ (vi) \quad \mu \text{ spread-out on } \overline{\langle S_{\mu} \rangle}. \end{array}$

Example

H compact subgroup. $\mu = m_H$. Then μ uniformly ergodic on $L_1^0(\overline{\langle S_\mu \rangle})$ but not on $L_1^0(G)$.

UNIFORMLY ERGODIC MEASURES ON LOCALLY COMPACT GROUPS

Alberto Rodríguez Arenas

Joint work with Jorge Galindo and Enrique Jordá

Valladolid June 2022 Workshop on Functional and Complex Analysis