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E is a Banach space.
T : E −→ E a continuous and linear operator.

Iterates: T n = T◦ n-fold· · · ◦T

Cesàro means: T[n] =
1

n

n∑
m=1

Tm

T is called power bounded if the set supn∈N ∥T n∥ < ∞.
T is called (uniformly) mean ergodic when (T[n])n converges in
the strong operator topology (resp. uniformly on bounded sets).
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G topological (locally compact) group.
C0(G ) continuous functions vanishing at infinity.
M(G ) = C0(G )∗

⟨µ, f ⟩ =
∫
G
f dµ.

µ ∈ M(G ), µ ≥ 0 ⇒ ∥µ∥ = µ(G ).
µ probability measure : ⇐⇒ µ ≥ 0, µ(G ) = 1.
Haar measure: mG .
Lp spaces:

Lp(G ) = {f : ∥f ∥p =

(∫
G
|f |pdmG

)1/p

< ∞}.
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Convolution by a probability measure µ:

(µ ∗ f )(s) =
∫
G
f (x−1s)dµ(x), f ∈ Lp(G ), s ∈ G

Convolution operator: λp(µ) : Lp(G ) −→ Lp(G ),

[λp(µ)](f ) = µ ∗ f .
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µ probability measure.

Theorem (Galindo, Jordá)

G amenable, 1 < p < ∞
λp(µ) mean ergodic and power bounded.

Theorem (Galindo, Jordá)

G compact,
λ1(µ) mean ergodic and power bounded.

Theorem (Galindo, Jordá)

G Abelian, 1 < p < ∞
λp(µ) uniformly mean ergodic ⇐⇒ 1 is isolated in σ(λp(µ)).

Theorem (Galindo, Jordá)

G Abelian and compact,
λ1(µ) uniformly mean ergodic ⇐⇒ 1 is isolated in σ(λ1(µ)).
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G Abelian, 1 < p < ∞
λp(µ) uniformly mean ergodic ⇐⇒ 1 is isolated in σ(λp(µ)).

Theorem (Galindo, Jordá)
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Sµ support of µ.

Theorem (Galindo, Jordá)

λ1(µ) mean ergodic ⇒ ⟨Sµ⟩ is compact.

Theorem (Galindo, Jordá)

G Abelian.
λ1(µ) uniformly mean ergodic ⇐⇒ 1 is isolated in σ(λ1(µ)) and
⟨Sµ⟩ compact.
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L01(G ) = {f ∈ L1(G ) :

∫
G
f dmG = 0}

L01(G ) is invariant by λ1(µ).

Define λ0
1(µ) : L

0
1(G ) −→ L01(G ) by λ0

1(µ) = λ1(µ)|L01(G).

Problem: The relation between the uniform mean ergodicity of
λ1(µ) and λ0

1(µ).
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Theorem (Galindo, Jordá, R.)

G Abelian, µ probability measure. TFAE

(i) λ1(µ) is uniformly mean ergodic.

(ii) λ0
1(µ) is uniformly mean ergodic.

(iii) ⟨Sµ⟩ is compact and 1 isolated in σ(λ1(µ)).

Sketch of the proof: (i) and (iii) are equivalent from earlier.

∗If G is compact, L1(G ) = L01(G )⊕ C since f =
(
f −

∫
f
)
+

∫
f .

L01(G ) invariant by λ1(µ) ⇒ λ1(µ) = λ0
1(µ)⊕ I . Done

∗ G not compact. λ0
1(µ) is uniformly mean ergodic ⇒ 1 isolated in

σ(λ0
1(µ)) ⇒ 1 isolated in σ(λ1(µ)) ⇒ λ1(µ) is uniformly mean

ergodic
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Definition

A probability measure µ ∈ M(G ) is:

(i) adapted if ⟨Sµ⟩ = G

(ii) strictly aperiodic if it is adapted and every normal subgroup
satisfying Sµ ⊆ xN for some x ∈ G is actually N = G .

(iii) spread-out if µn is not singular for some n ∈ N (i.e. if there is
n ∈ N such that there is no set A ⊆ G with µn(A) = 1 and
mG (A) = 0).
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Theorem (Galindo, Jordá)

G compact ⇒ λ1(µ) mean ergodic.

Theorem (Galindo, Jordá)

λ1(µ) mean ergodic ⇒ ⟨Sµ⟩ is compact.

Corollary

µ adapted (⟨Sµ⟩ = G )

λ1(µ) mean ergodic ⇐⇒ G compact.
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Definition

A probability measure µ is

(i) ergodic (by convolutions) if limn[λ
0
1(µ)][n]f = 0 for f ∈ L01(G ).

(ii) completely mixing if limn[λ
0
1(µ)]

nf = 0 for f ∈ L01(G ).

Definition

A probability measure µ is

(i) uniformly ergodic if limn ∥[λ0
1(µ)][n]∥ = 0.

(ii) uniformly completely mixing if limn ∥[λ0
1(µ)]

n∥ = 0.
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Theorem

⟨Sµ⟩ compact ⇒ µ[n] −→ m⟨Sµ⟩ in σ(M(G ),C0(G )).

µ adapted ⇒ G = ⟨Sµ⟩ ⇒ µ[n] −→ mG

µ[n] ∗ f −→ mG ∗ f =

∫
G
f dmG = 0, f ∈ L01(G )

12



Theorem

⟨Sµ⟩ compact ⇒ µ[n] −→ m⟨Sµ⟩ in σ(M(G ),C0(G )).

µ adapted ⇒ G = ⟨Sµ⟩ ⇒ µ[n] −→ mG

µ[n] ∗ f −→ mG ∗ f =

∫
G
f dmG = 0, f ∈ L01(G )

12



(µ adapted ⇐⇒ G = ⟨Sµ⟩)

µ ergodic ⇒ µ adapted.
G is compact or Abelian: µ adapted ⇒ µ ergodic.

Corollary (Reminder)

µ adapted
λ1(µ) mean ergodic ⇐⇒ G compact.

Example

G Abelian, noncompact, µ adapted. Then µ is ergodic but λ1(µ)
is not mean ergodic.

Example

G Abelian, compact, µ not adapted. Then µ is not ergodic but
λ1(µ) is mean ergodic.
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(µ strictly aperiodic ⇐⇒ adapted and every normal subgroup satisfying

Sµ ⊆ xN for some x ∈ G is actually N = G .)

µ completely mixing ⇒ µ strictly aperiodic.
G is compact or Abelian: µ strictly aperiodic ⇒ µ completely
mixing.

Question: µ ergodic and strictly aperiodic ⇒ µ completely mixing?
True if:

µ spread out (Glasner)

G compact (Ito-Kawada)

G is in [SIN] (Jaworski)

µn and µn+1 are not mutually singular for some n ∈ N
(Foguel)

Question: µ uniformly ergodic and strictly aperiodic ⇒ µ uniformly
completely mixing?
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(µ spread-out ⇐⇒ ∃n ∈ N : ̸ ∃A ⊆ G with µn(A) = 1 and mG (A) = 0)

Theorem (Galindo, Jordá, R.)

G Abelian and compact, µ adapted probability measure.
µ uniformly ergodic ⇐⇒ µ spread-out.

Sketch of the proof:

∗ µ spread-out ⇒ ∃n : µn = µs + µa, µa = f ·mG , f > 0, µs

singular and positive.

∥λ0
1(µ

n)− λ0
1(µa)∥ = ∥λ0

1(µs)∥ < 1.

λ0
1(µa) is a compact operator ⇒ λ0

1(µ) is quasicompact. Done.

∗ µ not spread-out ⇒ (technical stuff) ⇒ 1 not isolated in
σ(λ0

1(µ)) ⇒ λ0
1(µ) not uniformly mean ergodic.
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(completely mixing ⇐⇒ [λ0
1(µ)]

nf −→ 0 for f ∈ L01(G ))

Theorem (Galindo, Jordá, R.)

G Abelian, µ adapted. TFAE

(i) µ uniformly completely mixing.

(ii) µ completely mixing and µ uniformly ergodic.

(iii) µ strictly aperiodic and µ uniformly ergodic.

Theorem (Yosida-Kakutani)

T ∈ L(X ) power bounded, quasicompact and without eigenvalues
of modulus 1 ⇒ ∥T n∥ −→ 0.

Sketch of the proof: µ completely mixing ⇐⇒ µ strictly aperiodic

∗ µ uniformly ergodic ⇒ µ spread-out ⇒ λ0
1(µ) is quasicompact.

∗ µ strictly aperiodic ⇒ (technical stuff) ⇒ no eigenvalues of
modulus 1.
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G Abelian, µ adapted. TFAE

(i) µ uniformly completely mixing.

(ii) µ completely mixing and µ uniformly ergodic.

(iii) µ strictly aperiodic and µ uniformly ergodic.

Theorem (Yosida-Kakutani)

T ∈ L(X ) power bounded, quasicompact and without eigenvalues
of modulus 1 ⇒ ∥T n∥ −→ 0.

Sketch of the proof: µ completely mixing ⇐⇒ µ strictly aperiodic

∗ µ uniformly ergodic ⇒ µ spread-out ⇒ λ0
1(µ) is quasicompact.

∗ µ strictly aperiodic ⇒ (technical stuff) ⇒ no eigenvalues of
modulus 1.

16



Theorem

G Abelian and connected, µ adapted.
µ uniformly completely mixing ⇐⇒ µ uniformly ergodic ⇐⇒ µ
spread-out.

Idea of proof: µ uniformly ergodic ⇒ µ strictly aperiodic.

Example

G Abelian non-connected.
∃H maximal proper normal open subgroup. Define µ = 1xHmG for
some x ̸∈ H.
By normality: H ⊊ ⟨xH⟩.
By maximality: ⟨Sµ⟩ = ⟨xH⟩ = G ⇒ µ adapted.
From its definition µ is spread-out.
µ is adapted and spread-out, but it is not strictly aperiodic by
construction.
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Theorem

G Abelian, ⟨Sµ⟩ compact. TFAE

(i) λ1(µ) : L1(G ) −→ L1(G ) uniformly mean ergodic.

(ii) λ0
1(µ) : L

0
1(G ) −→ L01(G ) uniformly mean ergodic.

(iii) λ1(µ) : L1(⟨Sµ⟩) −→ L1(⟨Sµ⟩) uniformly mean ergodic.

(iv) λ0
1(µ) : L

0
1(⟨Sµ⟩) −→ L01(⟨Sµ⟩) uniformly mean ergodic.

(v) µ uniformly ergodic on M(⟨Sµ⟩).
(vi) µ spread-out on ⟨Sµ⟩.

Example

H compact subgroup. µ = mH . Then µ uniformly ergodic on
L01(⟨Sµ⟩) but not on L01(G ).
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