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Notation

Standard notation from functional analysis:

X , Y , Z : Banach spaces over K = R or C.

H: Hilbert space.

BX : closed unit ball of X . SX : unit sphere of X .

X ∗: (topological) dual of X . x∗ ∈ X ∗: functional.

X #: algebraic dual of X , i.e., {f : X → K : f linear}.

L(X , Y ): space of bounded linear operators from X to Y .

K(X , Y ): space of compact linear operators from X into Y .

F(X , Y ): space of finite-rank linear operators from X into Y .

B(X × Y , Z): space of bilinear mappings from X × Y into Z .
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Picture from: https://www.reddit.com/r/physicsmemes/comments/
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Tensor products

Figure: Useful definition of tensor, according to several sources.

Original picture from The Simpsons, season 5, episode 10. Obtained at:
https://frinkiac.com/caption/S05E10/143909

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Tensor products - Brief introduction

V , W K-vector spaces, V ⊗ W is a v. s. that can be formed as A/∼, where:

A :=

{
n∑

k=1

λk(vk , wk) : n ∈ N, λk ∈ K, vk ∈ V , wk ∈ W

}
{

(v1 + v2, w) ∼ (v1, w) + (v2, w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)

{
λ(v , w) ∼ (λv , w)
λ(v , w) ∼ (v , λw)

The elements are called tensors, and are denoted like this: z =
∑n

k=1 λkvk ⊗wk .

Equivalently, V ⊗ W can be seen as the linear subspace of B(X × Y ,K)#

(algebraic dual) spanned by these evaluation maps:

(v ⊗ w)(A) = A(v , w), A ∈ B(X × Y ,K), v ∈ V , w ∈ W .

Universal property: if µ : V1 × V2 → V1 ⊗ V2 is the canonical mapping such
that µ(v1, v2) = v1 ⊗v2, then for any bilinear mapping f ∈ B(V1 ×V2, W ), there
is an unique linear mapping f : V1 ⊗ V2 → W with f (v1 ⊗ v2) = f (v1, v2).

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Tensor products - Brief introduction

V , W K-vector spaces

, V ⊗ W is a v. s. that can be formed as A/∼, where:

A :=

{
n∑

k=1

λk(vk , wk) : n ∈ N, λk ∈ K, vk ∈ V , wk ∈ W

}
{

(v1 + v2, w) ∼ (v1, w) + (v2, w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)

{
λ(v , w) ∼ (λv , w)
λ(v , w) ∼ (v , λw)

The elements are called tensors, and are denoted like this: z =
∑n

k=1 λkvk ⊗wk .

Equivalently, V ⊗ W can be seen as the linear subspace of B(X × Y ,K)#

(algebraic dual) spanned by these evaluation maps:

(v ⊗ w)(A) = A(v , w), A ∈ B(X × Y ,K), v ∈ V , w ∈ W .

Universal property: if µ : V1 × V2 → V1 ⊗ V2 is the canonical mapping such
that µ(v1, v2) = v1 ⊗v2, then for any bilinear mapping f ∈ B(V1 ×V2, W ), there
is an unique linear mapping f : V1 ⊗ V2 → W with f (v1 ⊗ v2) = f (v1, v2).

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Tensor products - Brief introduction

V , W K-vector spaces, V ⊗ W is a v. s. that can be formed as A/∼, where:

A :=

{
n∑

k=1

λk(vk , wk) : n ∈ N, λk ∈ K, vk ∈ V , wk ∈ W

}
{

(v1 + v2, w) ∼ (v1, w) + (v2, w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)

{
λ(v , w) ∼ (λv , w)
λ(v , w) ∼ (v , λw)

The elements are called tensors, and are denoted like this: z =
∑n

k=1 λkvk ⊗wk .

Equivalently, V ⊗ W can be seen as the linear subspace of B(X × Y ,K)#

(algebraic dual) spanned by these evaluation maps:

(v ⊗ w)(A) = A(v , w), A ∈ B(X × Y ,K), v ∈ V , w ∈ W .

Universal property: if µ : V1 × V2 → V1 ⊗ V2 is the canonical mapping such
that µ(v1, v2) = v1 ⊗v2, then for any bilinear mapping f ∈ B(V1 ×V2, W ), there
is an unique linear mapping f : V1 ⊗ V2 → W with f (v1 ⊗ v2) = f (v1, v2).

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Tensor products - Brief introduction

V , W K-vector spaces, V ⊗ W is a v. s. that can be formed as A/∼, where:

A :=

{
n∑

k=1

λk(vk , wk) : n ∈ N, λk ∈ K, vk ∈ V , wk ∈ W

}
{

(v1 + v2, w) ∼ (v1, w) + (v2, w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)

{
λ(v , w) ∼ (λv , w)
λ(v , w) ∼ (v , λw)

The elements are called tensors, and are denoted like this: z =
∑n

k=1 λkvk ⊗wk .

Equivalently, V ⊗ W can be seen as the linear subspace of B(X × Y ,K)#

(algebraic dual) spanned by these evaluation maps:

(v ⊗ w)(A) = A(v , w), A ∈ B(X × Y ,K), v ∈ V , w ∈ W .

Universal property: if µ : V1 × V2 → V1 ⊗ V2 is the canonical mapping such
that µ(v1, v2) = v1 ⊗v2, then for any bilinear mapping f ∈ B(V1 ×V2, W ), there
is an unique linear mapping f : V1 ⊗ V2 → W with f (v1 ⊗ v2) = f (v1, v2).

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Tensor products - Brief introduction

V , W K-vector spaces, V ⊗ W is a v. s. that can be formed as A/∼, where:

A :=

{
n∑

k=1

λk(vk , wk) : n ∈ N, λk ∈ K, vk ∈ V , wk ∈ W

}
{

(v1 + v2, w) ∼ (v1, w) + (v2, w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)

{
λ(v , w) ∼ (λv , w)
λ(v , w) ∼ (v , λw)

The elements are called tensors, and are denoted like this: z =
∑n

k=1 λkvk ⊗wk .

Equivalently, V ⊗ W can be seen as the linear subspace of B(X × Y ,K)#

(algebraic dual) spanned by these evaluation maps:

(v ⊗ w)(A) = A(v , w), A ∈ B(X × Y ,K), v ∈ V , w ∈ W .

Universal property: if µ : V1 × V2 → V1 ⊗ V2 is the canonical mapping such
that µ(v1, v2) = v1 ⊗v2, then for any bilinear mapping f ∈ B(V1 ×V2, W ), there
is an unique linear mapping f : V1 ⊗ V2 → W with f (v1 ⊗ v2) = f (v1, v2).

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Tensor products - Brief introduction

V , W K-vector spaces, V ⊗ W is a v. s. that can be formed as A/∼, where:

A :=

{
n∑

k=1

λk(vk , wk) : n ∈ N, λk ∈ K, vk ∈ V , wk ∈ W

}
{

(v1 + v2, w) ∼ (v1, w) + (v2, w)
(v , w1 + w2) ∼ (v , w1) + (v , w2)

{
λ(v , w) ∼ (λv , w)
λ(v , w) ∼ (v , λw)

The elements are called tensors, and are denoted like this: z =
∑n

k=1 λkvk ⊗wk .

Equivalently, V ⊗ W can be seen as the linear subspace of B(X × Y ,K)#

(algebraic dual) spanned by these evaluation maps:

(v ⊗ w)(A) = A(v , w), A ∈ B(X × Y ,K), v ∈ V , w ∈ W .

Universal property: if µ : V1 × V2 → V1 ⊗ V2 is the canonical mapping such
that µ(v1, v2) = v1 ⊗v2, then for any bilinear mapping f ∈ B(V1 ×V2, W ), there
is an unique linear mapping f : V1 ⊗ V2 → W with f (v1 ⊗ v2) = f (v1, v2).

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Projective Tensor Products

Independently of the approach, if X and Y are Banach spaces, X ⊗Y is a vector
space depending on X and Y and the projective tensor product of X and Y ,
X⊗̂πY , is its completion with the projective norm:

∥z∥π = inf

{
∞∑

k=1

∥xn∥∥yn∥ :
∞∑

n=1

∥xn∥∥yn∥ < ∞, z =
∞∑

n=1

xn ⊗ yn

}
.

∥x ⊗ y∥π = ∥x∥∥y∥.
BX⊗̂πY is the conv of the set BX ⊗ BY = {x ⊗ y : x ∈ BX , y ∈ BY }.

(X⊗̂πY )∗ = B(X × Y ,K) = L(X , Y ∗) = L(Y , X ∗), where ∀G : X → Y ∗,

G

(
∞∑

n=1

xn ⊗ yn

)
=

∞∑
n=1

G(xn)(yn).

R. A. Ryan. Introduction to tensor products of Banach spaces. Springer
Monographs in Mathematics, Springer-Verlag, London, 2002.
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Nuclear Operators

Figure: Nuclear operators (probably unrelated to the contents of this talk).

Original picture from The Simpsons, season 15, episode 12. Obtained at:
https://frinkiac.com/caption/S15E12/95470
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Nuclear Operators - Building them from tensors

There is a canonical operator J : X ∗⊗̂πY → L(X , Y ) s.t. if z =
∑∞

n=1 x∗
n ⊗yn,

then J(z) = Lz , where Lz(x) =
∑∞

n=1 x∗
n (x)yn for x ∈ X .

Operators that can be expressed in that form are called nuclear. The set of
nuclear operators is N (X , Y ) endowed with the nuclear norm:

∥T∥N = inf

{
∞∑

n=1

∥x∗
n ∥∥yn∥ : T (x) =

∞∑
n=1

x∗
n (x)yn

}
.

Nuclear operators are limits of finite rank operators, and hence compact.
N (X , Y ) can be identified with (X ∗⊗̂πY )/Ker(J) isometrically.
If X ∗ or Y has the approximation property, then (X ∗⊗̂πY ) = N (X , Y ).

Recall that a Banach space has the approximation property if ∀K ⊂ X compact
and ∀ε > 0, there exists T ∈ F(X , X) with ∥T (x) − x∥ < ε for all x ∈ K .

c0, ℓp, Lp(µ), C(K) and spaces with Shauder basis all have the A.P.
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Norm-attainment

Figure: Operator trying (and failing) to attain its norm...?

Original pictures from The Simpsons, season 09, episode 01. Obtained at:
https://frinkiac.com/caption/S09E01/712561
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Norm-attainment. (Density of NA operators)

Figure: Na is not dense... (probably unrelated to the contents of the talk).

Original picture from:
https://periodictableguide.com/sodium-element-in-periodic-table/
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Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }.

T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Norm-attaining operators - Short background

If T ∈ L(X , Y ), ∥T∥ = sup{∥T (x)∥ : x ∈ SX }. T attains its norm (denoted
as T ∈ NA(X , Y )) if ∃x ∈ SX such that ∥T (x)∥ = ∥T∥.

(1957) James: X reflexive ⇔ NA(X ,R) = X ∗.

(1961) Bishop-Phelps: NA(X ,R) is dense in X ∗.

(1963) Lindenstrauss: ∃X Banach space s.t. NA(X , X) is not dense in L(X).

Many related topics have been studied since by many authors. Some examples:

Norm attaining operators.

Norm attaining multilinear mappings.

Norm attaining homogeneous polynomials.

Norm attaining holomorphic functions.

...

Óscar Roldán (UV) - NA tensors and nuclear operators WFCA22, 23rd June 2022



Introduction
Results and examples

Other norm attaining concepts

B ∈ B(X × Y , Z) attains its norm if there is (x0, y0) ∈ SX × SY such that
∥B(x0, y0)∥ = ∥B∥ = sup(x,y)∈SX ×SY

∥B(x , y)∥. We write B ∈ NAB(X × Y , Z).

z ∈ X⊗̂πY attains its projective norm if ∃{(xn, yn)}n∈N ⊆ X × Y a bounded
sequence with

∑∞
n=1 ∥xn∥∥yn∥ < ∞ such that z =

∑∞
n=1 xn ⊗ yn and that

∥z∥π =
∑∞

n=1 ∥xn∥∥yn∥. We write z ∈ NAπ(X⊗̂πY ).

T ∈ N (X , Y ) attains its nuclear norm if ∃{(x∗
n , yn)}n∈N ⊆ X ∗ × Y a bounded

sequence with
∑∞

n=1 ∥x∗
n ∥∥yn∥ < ∞ such that T =

∑∞
n=1 x∗

n ⊗ yn and that
∥T∥N =

∑∞
n=1 ∥x∗

n ∥∥yn∥. We write T ∈ NAN (X , Y ).

We will use ∥ · ∥π (resp. ∥ · ∥N ) to approximate an element z ∈ X⊗̂πY (resp.
T ∈ N (X , Y )) by an element z ′ ∈ NAπ(X⊗̂πY ) (resp. T ′ ∈ NAN (X , Y )).
Even when not specified, density of norm attaining elements in these spaces will
always be in terms of those norms during this talk.
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n=1 ∥xn∥∥yn∥. We write z ∈ NAπ(X⊗̂πY ).

T ∈ N (X , Y ) attains its nuclear norm if ∃{(x∗
n , yn)}n∈N ⊆ X ∗ × Y a bounded

sequence with
∑∞

n=1 ∥x∗
n ∥∥yn∥ < ∞ such that T =

∑∞
n=1 x∗

n ⊗ yn and that
∥T∥N =

∑∞
n=1 ∥x∗

n ∥∥yn∥. We write T ∈ NAN (X , Y ).

We will use ∥ · ∥π (resp. ∥ · ∥N ) to approximate an element z ∈ X⊗̂πY (resp.
T ∈ N (X , Y )) by an element z ′ ∈ NAπ(X⊗̂πY ) (resp. T ′ ∈ NAN (X , Y )).
Even when not specified, density of norm attaining elements in these spaces will
always be in terms of those norms during this talk.
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Motivation of our topic

2 important classical questions about norm attainment:

Question (J. Diestel, J. Uhl, J. Johnson, J. Wolfe, ≈ 1970)
Can all compact operators be approximated by norm attaining operators?

Answer (M. Martín, 2014)

No. ∃X , Y Banach spaces and ∃T ∈ K(X , Y ) s.t. T /∈ NA(X , Y ).

Main open question on norm attainment
Can all finite rank operators be approximated by norm attaining operators?

Remark

This isn’t known even if the range space is Y = (R2, ∥ · ∥2).

Note that F(X , Y ) ⊂ N (X , Y ) ⊂ K(X , Y ), and that projective tensors are
closely related to operators, bilinear mappings and nuclear operators.
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Results and examples

Tool for tensors

Theorem

Let X , Y be Banach spaces. Let z ∈ X⊗̂πY with

z =
∞∑

n=1

λnxn ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N. TFAE:

(1) z ∈ NAπ(X⊗̂πY ).

(2) ∃G ∈ SL(X ,Y ∗) such that G(xn)(yn) = 1, ∀n.

(3) ∀G ∈ SL(X ,Y ∗), G(z) = ∥z∥π satisfies G(xn)(yn) = 1, ∀n.
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Tool for nuclear operators

Theorem
Let X , Y be Banach spaces. Let T ∈ N (X , Y ) with

T =
∞∑

n=1

λnx∗
n ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N. TFAE:
(1) T ∈ NAN (X , Y ).

(2) ∃G ∈ (ker J)⊥ with ∥G∥ = 1 such that G(x∗
n )(yn) = 1, ∀n.

(3) ∀G ∈ (ker J)⊥, ∥G∥ = 1, G(T ) = ∥T∥N =⇒ G(x∗
n )(yn) = 1, ∀n.
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Question 1

QUESTION
Are there tensors that attain their projective norm or nuclear operators that
attain their nuclear norm?
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First positive results

There are Banach spaces X , Y such that NAN (X , Y ) ̸= ∅.
Remark: T ∈ NAN (X , Y ) does not imply T ∈ NA(X , Y ) in general.

Let Y be an infinite dimensional strictly convex Banach space.
Take (yn)n ⊂ SY linearly independent.
Hahn-Banach =⇒ ∀n, there is y∗

n ∈ SY ∗ s.t. y∗
n (yn) = 1.

Define ϕ : Y → ℓ∞ by ϕ(y) := (y∗
j (y))+∞

j=1

ϕ is well defined, linear and continuous and ∥ϕ∥ = 1.
ϕ(yn)(e∗

n ) = 1 for all n ∈ N, (e∗
n )n canonical basis of c∗

0 = ℓ1.

Define T : c0 → Y by T :=
+∞∑
n=1

1
2n e∗

n ⊗ yn.

T ∈ NAN (c0, Y ), but T does not have finite rank.

(M. Martín, 2014) Lemma 2.2=⇒ NA(c0, Y ) ⊂ F(c0, Y ).
T /∈ NA(c0, Y ).
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First positive results

Proposition

1) If X and Y are finite dimensional Banach spaces, then,

NAπ(X⊗̂πY ) = X⊗̂πY (⇔ NAN (X , Y ) = N (X , Y )).

2) If H is a complex Hilbert space, then,

NAN (H, H) = N (H, H) (⇔ NAπ(H⊗̂πH) = H⊗̂πH).

3) If Y is any Banach space,

NAN (c0, Y ) = N (c0, Y ) (⇔ NAπ(ℓ1⊗̂πY ) = ℓ1⊗̂πY ).

Remark
Compare item 3) with this classical result:

If X is a Banach space such that NA(X , Y ) = L(X , Y ) for every Banach space
Y , then X must be reflexive.
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Question 2

QUESTION
Is it natural to ask whether or not the equalities

NAN (X , Y ) = N (X , Y ), and NAπ(X⊗̂πY ) = X⊗̂πY

hold for any arbitrary Banach spaces X and Y .
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Negative result

Proposition

Let X and Y be Banach spaces such that NAπ(X⊗̂πY ) = X⊗̂πY . Then

NAB(X × Y ,K)
∥·∥

= B(X × Y ,K) (=⇒ NA(X , Y ∗)
∥·∥

= L(X , Y ∗)).

Negative examples
X = Y = L1[0, 1] ⇒ NAB(X × Y ,K) not dense in B(X × Y ,K).
(Y. S. Choi, 1997).
X = L1[0, 1], Y ∗ strictly convex Banach space without the RNP ⇒
NA(X , Y ∗) not dense in L(X , Y ∗).
(J. J. Uhl, 1976).
There is a Banach space G such that NAB(G × ℓp,K) is not dense in
B(G × ℓp,K) for 1 < p < ∞.
(W. T. Gowers, 1990).
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Results and examples

An interesting negative example

A link with the classical norm attainment theory
Assume that NAN (X , Y ) = N (X , Y ) whenever X is finite-dimensional. Then
NAπ(X⊗̂πY ) = X⊗̂πY and NAπ(Y ⊗̂πX) = Y ⊗̂πX , so NA(Y , X) is dense in
L(Y , X). So if that were true, the main NA question would be solved.

Lemma

Let X and Y be Banach spaces. If B ∈ B(X × Y ,K) = (X⊗̂πY )∗ attains its
norm as a functional at some z ∈ NAπ(X⊗̂πY ), then B ∈ NAB(X × Y ,K).

Negative example
Let X = L1(T), where T is the unit circle equipped with the Haar measure
m, and let Y be the 2-dimensional Hilbert space. Then, ∃T ∈ B(X ×Y ,K)
which attains its norm as a linear functional on X⊗̂πY , but not as an
operator from X into Y ∗ (nor the more as a bilinear form on X × Y ).
(G. Godefroy, 2015).
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Question 3

We have seen examples of spaces where every tensor attains its projective norm
and where every nuclear operator attains its nuclear norm.

But we have also seen many examples where not every tensor or nuclear operator
attains its respective norm.

QUESTION
What can we say about the density of norm attaining tensors and nuclear oper-
ators? Do we always have density of such norm attaining elements?
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Question 3

Figure: Asking an AI if norm-attaining tensors are dense.

Pictures generated by AI at https://huggingface.co/spaces/dalle-mini/dalle-mini
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The Lo,o and the Lo,o,B

Definition: Lo,o and Lo,o,B (Dantas, 2017 | Dantas-Kim-Lee-Mazzitelli, 2020)
Let X , Y and Z be Banach spaces.
(a) (X , Y ) has the Lo,o for operators if given ε > 0 and T ∈ SL(X ,Y ), there is

η(ε, T ) > 0 such that whenever x ∈ SX satisfies ∥T (x)∥ > 1 − η(ε, T ),
there is x0 ∈ SX such that ∥T (x0)∥ = 1 and ∥x0 − x∥ < ε.

(b) (X ×Y , Z) satisfies the Lo,o for bilinear mappings (Lo,o,B) if given ε > 0 and
B ∈ B(X ×Y , Z) with ∥B∥ = 1, there exists η(ε, B) > 0 such that whenever
(x , y) ∈ SX ×SY satisfies ∥B(x , y)∥ > 1−η(ε, B), there is (x0, y0) ∈ SX ×SY
such that ∥B(x0, y0)∥ = 1, ∥x − x0∥ < ε, and ∥y − y0∥ < ε.

Examples (Dantas-Kim-Lee-Mazzitelli, 2020)
(a) dim(X), dim(Y ) < ∞ =⇒ (X × Y , Z) has the Lo,o,B ∀Z Banach.
(b) If Y is unif. conv., (X × Y ,K) has the Lo,o,B ⇐⇒ (X , Y ∗) has the Lo,o .
(c) If 1 < p, q < ∞, then (ℓp × ℓq,K) has the Lo,o,B if and only if p > q′.

(d) There are reflexive spaces X , Y s.t. (X × Y ,K) fails the Lo,o,B.
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First results on density

Theorem
Let X , Y be Banach spaces.
(a) If (X ∗ × Y ,K) has the Lo,o,B, then

NAN (X , Y )
∥·∥N = N (X , Y ).

(b) If (X × Y ,K) has the Lo,o,B, then

NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .

Corollary
Let X be a finite-dimensional Banach space, and let Y be a Banach space. Then
if Y is finite dimensional or uniformly convex, we have:

NAN (X , Y )
∥·∥N = N (X , Y ), NAπ(X⊗̂πY )

∥·∥π

= X⊗̂πY .
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Metric π-property

Definition (metric π-property)
A Banach space X has metric π-property if given ε > 0 and {x1, . . . , xn} ⊆ SX ,
there is a finite dimensional 1-complemented subspace M ⊆ X and there are
x ′

i ∈ M with ∥xi − x ′
i ∥ < ε, for every i ∈ {1, . . . , n}.

This is equivalent to what is called metric π-property as an approximation
property. Check P. G. Casazza’s chapter on approximation properties.

Spaces with metric π-property
(a) Banach spaces with monotone Schauder basis.
(b) Lp(µ)-spaces for any 1 ≤ p < ∞ and any measure µ.
(c) Isometric predual spaces of L1.
(d) If {Xn}n∈N have the metric π-property, then so do

[⊕
n∈N Xn

]
c0

and[⊕
n∈N Xn

]
ℓp

, with 1 ≤ p < ∞.

(e) If X and Y have the metric π-property, then so do X⊗̂πY (projective tensor
product), X⊗̂εY (injective tensor product) and X ⊕a Y (absolute sum).
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More results on density

Theorem
Let X be a Banach space satisfying metric π-property.

(a) If Y satisfies metric π-property, then NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .

(b) If Y is uniformly convex, then NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .

Remark
Metric π-property =⇒ metric approximation property =⇒ A.P.

Corollary
Let X be Banach space such that X ∗ satisfies metric π-property.

(a) If Y satisfies metric π-property, then NAN (X , Y )
∥·∥N = N (X , Y ).

(b) If Y is uniformly convex, then NAN (X , Y )
∥·∥N = N (X , Y ).
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Density results from further research

S. Dantas, L. C. García-Lirola, M. Jung, A. Rueda Zoca, On
norm-attainment in (symmetric) tensor products, Quaestiones Mathemati-
cae (2022).

They got more density results involving dual spaces, approximation properties
and Radon-Nikodym Property. For example:

Theorem (Dantas, García-Lirola, Jung, Rueda Zoca)

a) Y dual =⇒ NAπ(c0⊗̂πY )
∥·∥π

= c0⊗̂πY .

b) X ∗ and Y ∗ RNP and one has AP =⇒ NAπ(X ∗⊗̂πY ∗)
∥·∥π

= X ∗⊗̂πY ∗.

c) X and Y reflexive and one has AP =⇒ NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .
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Question 4

It seems that many spaces satisfy the density of norm attaining tensors and
nuclear operators.

QUESTION
Are the following equalities true in general for all Banach spaces X and Y ?

(a) NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .

(b) NAN (X , Y )
∥·∥N = N (X , Y ).
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A negative result for tensors

Theorem
Let R be . There exists a subspace X of c0 without the approximation property
and a subspace Y of R such that

NAπ(X⊗̂πY ∗)
∥·∥π

̸= X⊗̂πY ∗.

Idea: Recall that NAπ(X⊗̂πY ∗) is linked with NA(X , Y ∗∗). We work in a
setting where:

The lack of approximation property allows us to have operators that can’t
be approximated by finite rank operators.
The only norm attaining operators have finite rank.
We prove that NA(X , Y ∗∗) ∩ BL(X ,Y ∗∗) is not norming for X⊗̂πY ∗ here.
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Further research

S. Dantas, L. C. García-Lirola, M. Jung, A. Rueda Zoca, On
norm-attainment in (symmetric) tensor products, Quaestiones Mathemati-
cae (2022).

The authors have studied similar questions involving:

N-fold projective symmetric tensor product, ⊗̂π,s,NX (which is the comple-
tion of the space generated by the elements {x⊗ N· · · ⊗x : x ∈ X} with the
projective norm for those spaces).

N-homogeneous polynomials P(NX) (which is the dual of ⊗̂π,s,NX).
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Some more background for the interested reader

Figure: Interested reader (∗)

(∗): Picture from:
https://www.estandarte.com/noticias/varios/fotos-de-perros-leyendo_2352.html
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