Mean ergodic composition operators on spaces of holomorphic functions

Daniel Santacreu Ferrà Joint work with David Jornet and Pablo Sevilla

Universitat Politècnica de València

Workshop on Functional and Complex Analysis. University of Valladolid. June 20-23, 2022

Let X and Y be Banach spaces.

Let X and Y be Banach spaces.

■ We denote by $\mathcal{P}(^{m}X, Y)$ the space of (continuous) *m*-homogeneous polynomials from *X* to *Y*.

Let X and Y be Banach spaces.

- We denote by $\mathcal{P}(^{m}X, Y)$ the space of (continuous) *m*-homogeneous polynomials from X to Y.
- A map p: X → Y is in P(^mX, Y) if there exists a continuous m-linear form L: X × .^m. × X → Y such that L(x, .^m., x) = p(x) for all x ∈ X.

Let X and Y be Banach spaces.

- We denote by $\mathcal{P}(^{m}X, Y)$ the space of (continuous) *m*-homogeneous polynomials from X to Y.
- A map p: X → Y is in P(^mX, Y) if there exists a continuous m-linear form L: X × .^m. × X → Y such that L(x, .^m., x) = p(x) for all x ∈ X.

• For any $p \in \mathcal{P}(^{m}X, Y)$, $\lambda \in \mathbb{C}$ and $x \in X$ we have:

$$p(\lambda x) = \lambda^m p(x)$$

Let $B_X \subset X$ denote the open unit ball (or simply *B*). A function $f : B \to Y$ is holomorphic if for each $a \in B$ there are $p_m \in \mathcal{P}(^mX, Y)$ such that

$$f(x) = \sum_{m=0}^{\infty} p_m(x-a),$$

converges uniformly on some open ball $B(a, r) \subset B$.

Let $B_X \subset X$ denote the open unit ball (or simply *B*). A function $f : B \to Y$ is holomorphic if for each $a \in B$ there are $p_m \in \mathcal{P}(^mX, Y)$ such that

$$f(x) = \sum_{m=0}^{\infty} p_m(x-a),$$

converges uniformly on some open ball $B(a, r) \subset B$.

 If Y = C the space of holomorphic functions on B is denoted by H(B). Endowed with τ₀ the topology of uniform convergence on compact sets.

- If $Y = \mathbb{C}$ the space of holomorphic functions on *B* is denoted by H(B). Endowed with τ_0 the topology of uniform convergence on compact sets.
- We denote by H_b(B) the space of functions on H(B) which are of bounded type. Each 0 < r < 1 defines a seminorm</p>

$$p_r(f) := \sup_{x \in rB} |f(x)|.$$

- If $Y = \mathbb{C}$ the space of holomorphic functions on *B* is denoted by H(B). Endowed with τ_0 the topology of uniform convergence on compact sets.
- We denote by H_b(B) the space of functions on H(B) which are of bounded type. Each 0 < r < 1 defines a seminorm</p>

$$p_r(f) := \sup_{x \in rB} |f(x)|.$$

■ We denote by H[∞](B) the space of functions on H(B) which are of bounded in B. The norm is given by

$$\|f\|:=\sup_{x\in B}|f(x)|.$$

• Let $\varphi : B \to B$ be a holomorphic mapping. We denote by $C_{\varphi} : H(B) \to H(B)$ the **composition operator**. It is defined by

$$C_{\varphi}(f)=f\circ\varphi.$$

• Let $\varphi : B \to B$ be a holomorphic mapping. We denote by $C_{\varphi} : H(B) \to H(B)$ the **composition operator**. It is defined by

$$C_{\varphi}(f)=f\circ\varphi.$$

• φ is the **symbol** of the composition operator.

• Let $\varphi : B \to B$ be a holomorphic mapping. We denote by $C_{\varphi} : H(B) \to H(B)$ the **composition operator**. It is defined by

$$C_{\varphi}(f)=f\circ\varphi.$$

- φ is the **symbol** of the composition operator.
- We have $C_{\varphi} : H_b(B) \to H_b(B)$ is well defined if and only if for each 0 < r < 1 there is 0 < s < 1 such that

 $\varphi(\mathbf{r}B) \subseteq \mathbf{s}B.$

Aim

Characterise some dynamical properties of C_{φ} defined in H(B), $H_b(B)$ and $H^{\infty}(B)$ in terms of the symbol φ .

Aim

Characterise some dynamical properties of C_{φ} defined in H(B), $H_b(B)$ and $H^{\infty}(B)$ in terms of the symbol φ .

Dynamical properties:

- Power boundedness
- Topologizability
- Mean ergodicity
- Uniform mean ergodicity

Let *E* be a lcHs and $T: E \rightarrow E$ and operator. We denote

Let E be a lcHs and $T: E \rightarrow E$ and operator. We denote

- $T^0 = Id$,
- $T^1 = T$,
- $\bullet T^n = T^{n-1} \circ T,$

Let E be a lcHs and $T: E \rightarrow E$ and operator. We denote

- $T^0 = Id$,
- $T^1 = T$,
- $\bullet T^n = T^{n-1} \circ T,$
- The n-th Cesàro mean

$$T_{[n]} := \frac{1}{n} \sum_{m=0}^{n-1} T^m.$$

Let $\mathcal{L}(E)$ denote the space of continuous linear operators from E to E. An operator $T: E \to E$ is

Let $\mathcal{L}(E)$ denote the space of continuous linear operators from E to E. An operator $T: E \to E$ is

- **Power Bounded**: $(T^n)_n$ is equicontinuous in $\mathcal{L}(E)$.
- **Topologizable**: there exist $a_n > 0$ such that $(a_n \cdot T^n)_n$ is equicontinuous in $\mathcal{L}(E)$.

Let $\mathcal{L}(E)$ denote the space of continuous linear operators from E to E. An operator $T: E \to E$ is

- **Power Bounded**: $(T^n)_n$ is equicontinuous in $\mathcal{L}(E)$.
- **Topologizable**: there exist $a_n > 0$ such that $(a_n \cdot T^n)_n$ is equicontinuous in $\mathcal{L}(E)$.
- Mean Ergodic (ME): (T_[n])_n converges in the topology of pointwise convergence of L(E) (strong operator topology when E is Banach).
- Uniformly Mean Ergodic (UME): $(T_{[n]})_n$ converges in the topology of bounded convergence of $\mathcal{L}(E)$ (operator norm topology when E is Banach).

Proposition (Bonet, Domański)

Let U be a connected domain of holomorphy in \mathbb{C}^d and let $\varphi : U \to U$ a holomorphic mapping. T.F.A.E.:

- a $C_{\varphi}: H(U) \rightarrow H(U)$ is power bounded.
- **b** $C_{\varphi}: H(U) \rightarrow H(U)$ is uniformly mean ergodic.
- **c** $C_{\varphi}: H(U) \rightarrow H(U)$ is mean ergodic.
- d φ has stable orbits.

Proposition (Bonet, Domański)

Let U be a connected domain of holomorphy in \mathbb{C}^d and let $\varphi : U \to U$ a holomorphic mapping. T.F.A.E.:

- a $C_{\varphi}: H(U) \rightarrow H(U)$ is power bounded.
- **b** $C_{\varphi}: H(U) \rightarrow H(U)$ is uniformly mean ergodic.
- **c** $C_{\varphi}: H(U) \rightarrow H(U)$ is mean ergodic.
- d φ has stable orbits.

When X is infinite dimensional:

- H(B) is a locally convex semi-Montel space (not barrelled).
- *H_b*(*B*) is a Fréchet space (not Montel).
- $H^{\infty}(B)$ is a Banach space (not Montel).

Let $\varphi: B \to B$ be a holomorphic map. We say that $\varphi...$

Let $\varphi: B \to B$ be a holomorphic map. We say that φ ...

■ Has stable orbits if for each compact subset K ⊂ B there is a compact L ⊂ B such that

 $\varphi^n(K) \subseteq L$ for every $n \in \mathbb{N}$.

Let $\varphi: B \to B$ be a holomorphic map. We say that $\varphi...$

■ Has stable orbits if for each compact subset K ⊂ B there is a compact L ⊂ B such that

$$\varphi^n(K) \subseteq L$$
 for every $n \in \mathbb{N}$.

Has B-stable orbits if for each 0 < r < 1 there is 0 < s < 1 such that</p>

 $\varphi^n(rB) \subseteq sB$ for every $n \in \mathbb{N}$.

Let $\varphi: B \to B$ be a holomorphic map. We say that $\varphi...$

■ Has stable orbits if for each compact subset K ⊂ B there is a compact L ⊂ B such that

$$\varphi^n(K) \subseteq L$$
 for every $n \in \mathbb{N}$.

Has B-stable orbits if for each 0 < r < 1 there is 0 < s < 1 such that</p>

$$\varphi^n(rB) \subseteq sB$$
 for every $n \in \mathbb{N}$.

Remark

By Schwarz Lemma, if $\varphi(0) = 0$ we have for all $n \in \mathbb{N}$ and $x \in B$

 $\|\varphi^n(x)\| \le \|x\|.$

And φ has *B*-stable orbits.

Daniel Santacreu

Examples

Examples

Examples

The Hilbert space case

Let *H* be a Hilbert space and denote B_H its open unit ball. For each $a \in B_H$ we can find a map $\alpha_a : B_H \to B_H$ such that...

The Hilbert space case

Let *H* be a Hilbert space and denote B_H its open unit ball. For each $a \in B_H$ we can find a map $\alpha_a : B_H \to B_H$ such that...

- It is an automorphism
- It is holomorphic
- For each 0 < r < 1 there is 0 < s < 1 such that $\alpha_a(rB) \subseteq sB$

•
$$\alpha_a(a) = 0$$
 and $\alpha_a(0) = a$
• $\alpha_a^{-1} = \alpha_a$

The Hilbert space case

Let *H* be a Hilbert space and denote B_H its open unit ball. For each $a \in B_H$ we can find a map $\alpha_a : B_H \to B_H$ such that...

- It is an automorphism
- It is holomorphic
- For each 0 < r < 1 there is 0 < s < 1 such that $\alpha_a(rB) \subseteq sB$

•
$$\alpha_a(a) = 0$$
 and $\alpha_a(0) = a$
• $\alpha_a^{-1} = \alpha_a$

Remark

Consider $\varphi: B_H \to B_H$ a holomorphic map such that $\varphi(a) = a$ for some $a \in B_H$. Then

$$(\alpha_a \circ \varphi \circ \alpha_a)(0) = 0.$$

And $\alpha_a \circ \varphi \circ \alpha_a$ has B_H -stable orbits. Consequently, φ has B_H -stable orbits.

Daniel Santacreu

H(B): Power bounded

Theorem

Let $\varphi : B \to B$ be holomorphic. Then the following are equivalent:

- φ has stable orbits.
- $C_{\varphi}: H(B) \rightarrow H(B)$ is power bounded.
- $\left(\frac{1}{n}C_{\varphi}^{n}\right)_{n}$ is equicontinuous in $\mathcal{L}(H(B))$.
- $C_{\varphi}: H(B) \rightarrow H(B)$ is topologizable.

H(B): Power bounded

Theorem

Let $\varphi : B \to B$ be holomorphic. Then the following are equivalent:

- φ has stable orbits.
- $C_{\varphi}: H(B) \rightarrow H(B)$ is power bounded.
- $\left(\frac{1}{n}C_{\varphi}^{n}\right)_{n}$ is equicontinuous in $\mathcal{L}(H(B))$.
- $C_{\varphi}: H(B) \rightarrow H(B)$ is topologizable.

(Mujica) Let $K \subset B$ be a compact subset. Then this set is compact

$$\widehat{\mathcal{K}}_{\mathcal{H}(\mathcal{B})} = \{x \in B : |f(x)| \leq \sup_{y \in \mathcal{K}} |f(y)| ext{ for every } f \in \mathcal{H}(\mathcal{B})\}$$

The space H(B)

H(B): Power bounded \Rightarrow UME

Proposition (Bonet, de Pagter, Ricker)

Let E be a semi-Montel IcHs. Then every power bounded operator on E is uniformly mean ergodic.

The space H(B)

H(B): Power bounded \Rightarrow UME

Proposition (Bonet, de Pagter, Ricker)

Let E be a semi-Montel IcHs. Then every power bounded operator on E is uniformly mean ergodic.

The space H(B) is semi-Montel.

H(B): Power bounded \Rightarrow UME

Proposition (Bonet, de Pagter, Ricker)

Let E be a semi-Montel IcHs. Then every power bounded operator on E is uniformly mean ergodic.

The space H(B) is semi-Montel.

Corollary

Let $\varphi : B \to B$ be holomorphic mapping. If $C_{\varphi} : H(B) \to H(B)$ is power bounded, then it is uniformly mean ergodic.

$H_b(B)$: Power bounded

Theorem

Let $\varphi : B \to B$ be holomorphic of bounded type. Then the following are equivalent:

- φ has B-stable orbits.
- $C_{\varphi}: H_b(B) \to H_b(B)$ is power bounded.
- $\left(\frac{1}{n}C_{\varphi}^{n}\right)_{n}$ is equicontinuous in $\mathcal{L}(H_{b}(B))$.
- $C_{\varphi}: H_b(B) \to H_b(B)$ is topologizable.

$H_b(B)$: Power bounded

Theorem

Let $\varphi : B \to B$ be holomorphic of bounded type. Then the following are equivalent:

- φ has B-stable orbits.
- $C_{\varphi}: H_b(B) \to H_b(B)$ is power bounded.
- $\left(\frac{1}{n}C_{\varphi}^{n}\right)_{n}$ is equicontinuous in $\mathcal{L}(H_{b}(B))$.
- $C_{\varphi}: H_b(B) \rightarrow H_b(B)$ is topologizable.

Fix 0 < r < 1. For every subset $A \subseteq rB$ there is 0 < s < 1 such that

$$\widehat{A}_{H_b(B)} = \{x \in B : |f(x)| \leq \sup_{y \in A} |f(y)| ext{ for every } f \in H_b(B)\}$$

is contained in sB.

The space $H_b(B)$

$H_b(B)$: ME \Rightarrow Power bounded

Remark

If $C_{\varphi}: H_b(B) \to H_b(B)$ is mean ergodic, the sequence $(\frac{1}{n}C_{\varphi}^n)_n$ converges to 0 pointwise. Then it is equicontinuous in $\mathcal{L}(H_b(B))$.

The space $H_b(B)$

$H_b(B)$: ME \Rightarrow Power bounded

Remark

If $C_{\varphi}: H_b(B) \to H_b(B)$ is mean ergodic, the sequence $(\frac{1}{n}C_{\varphi}^n)_n$ converges to 0 pointwise. Then it is equicontinuous in $\mathcal{L}(H_b(B))$.

Proposition

If $C_{\varphi} : H_b(B) \to H_b(B)$ is mean ergodic, then C_{φ} is power bounded.

$H_b(B)$: Power bounded \Rightarrow ME

The following operators are power bounded but not mean ergodic

•
$$C_S: H_b(B_{c_0}) \rightarrow H_b(B_{c_0})$$

• $C_F: H_b(B_{\ell_1}) \to H_b(B_{\ell_1})$

$H_b(B)$: Power bounded \Rightarrow ME

The following operators are power bounded but not mean ergodic

$$\bullet C_S: H_b(B_{c_0}) \to H_b(B_{c_0})$$

$$\bullet C_F: H_b(B_{\ell_1}) \to H_b(B_{\ell_1})$$

Idea: The space $H_b(B_X)$ contains a complemented copy of X'. We have $C_S|_{\ell_1} = F : \ell_1 \to \ell_1$ and $C_F|_{\ell_\infty} = S : \ell_\infty \to \ell_\infty$ are not mean ergodic.

$H_b(B)$: Sometimes... Power bounded \Leftrightarrow ME

We say that function $p: X \to \mathbb{C}$ is in $\mathcal{P}(X)$ (is a polynomial) if for some $M \in \mathbb{N}_0$ we have

$$p=\sum_{m=0}^{M}p_{m},$$

where $p_m \in \mathcal{P}(^mX)$ for m > 0 and $p_0 : X \to \mathbb{C}$ is a constant function.

$H_b(B)$: Sometimes... Power bounded \Leftrightarrow ME

We say that function $p: X \to \mathbb{C}$ is in $\mathcal{P}(X)$ (is a polynomial) if for some $M \in \mathbb{N}_0$ we have

$$p = \sum_{m=0}^{M} p_m$$

where $p_m \in \mathcal{P}(^mX)$ for m > 0 and $p_0 : X \to \mathbb{C}$ is a constant function.

Proposition

Assume that $\varphi(rB_X)$ is relatively $\sigma(X, \mathcal{P}(X))$ -compact for every 0 < r < 1. Then $C_{\varphi} : H_b(B_X) \to H_b(B_X)$ is mean ergodic if and only if it is power bounded (eq. φ has B_X -stable orbits).

$H_b(B)$: Sometimes... Power bounded \Leftrightarrow ME

We say that function $p: X \to \mathbb{C}$ is in $\mathcal{P}(X)$ (is a polynomial) if for some $M \in \mathbb{N}_0$ we have

$$p = \sum_{m=0}^{M} p_m$$

where $p_m \in \mathcal{P}(^mX)$ for m > 0 and $p_0 : X \to \mathbb{C}$ is a constant function.

Proposition

Assume that $\varphi(rB_X)$ is relatively $\sigma(X, \mathcal{P}(X))$ -compact for every 0 < r < 1. Then $C_{\varphi} : H_b(B_X) \to H_b(B_X)$ is mean ergodic if and only if it is power bounded (eq. φ has B_X -stable orbits).

The Tsirelson space T^* satisfies the assumption.

$H_b(B)$: ME \Rightarrow UME

Lemma (Köthe II)

Let $(T_n)_n$ be a sequence of equicontinuous operators on a lcHs. If it converges pointwise to an operator T on some dense set, then $(T_n)_n$ is pointwise convergent to T in the whole space.

$H_b(B)$: ME \Rightarrow UME

Lemma (Köthe II)

Let $(T_n)_n$ be a sequence of equicontinuous operators on a lcHs. If it converges pointwise to an operator T on some dense set, then $(T_n)_n$ is pointwise convergent to T in the whole space.

Theorem (A. Defant, D. García, M. Maestre, P. Sevilla-Peris)

The set of monomials generates a dense subspace of $H_b(B_{c_0})$.

$H_b(B)$: ME \Rightarrow UME

Lemma (Köthe II)

Let $(T_n)_n$ be a sequence of equicontinuous operators on a lcHs. If it converges pointwise to an operator T on some dense set, then $(T_n)_n$ is pointwise convergent to T in the whole space.

Theorem (A. Defant, D. García, M. Maestre, P. Sevilla-Peris)

The set of monomials generates a dense subspace of $H_b(B_{c_0})$.

Example

The operator $C_F : H_b(B_{c_0}) \to H_b(B_{c_0})$ is mean ergodic but not uniformly mean ergodic.

The space $H_b(B)$

$H_b(B)$: Suficient conditions for UME

Proposition

Let $\varphi:B\to B$ be holomorphic so that for every 0< t<1 there is $0<\rho< t$ such that

 $\varphi(tB) \subseteq \rho B.$

Then $C_{\varphi}^n \to C_0$ uniformly on the bounded sets of $H_b(B)$ and C_{φ} is uniformly mean ergodic.

$H_b(B)$: Suficient conditions for UME

Proposition

Let $\varphi:B\to B$ be holomorphic so that for every 0< t<1 there is $0<\rho< t$ such that

$$\varphi(tB)\subseteq \rho B.$$

Then $C_{\varphi}^n \to C_0$ uniformly on the bounded sets of $H_b(B)$ and C_{φ} is uniformly mean ergodic.

The following polynomial in $\mathcal{P}(^2\ell_2,\ell_2)$ satisfies the assumption

$$P(x_1, x_2, x_3, \dots) = (x_1^2, x_2^2, x_3^2, \dots).$$

$H_b(B)$: Suficient conditions for UME

Proposition

Let $\varphi:B\to B$ be holomorphic so that for every 0< t<1 there is $0<\rho< t$ such that

$$\varphi(tB)\subseteq \rho B.$$

Then $C_{\varphi}^n \to C_0$ uniformly on the bounded sets of $H_b(B)$ and C_{φ} is uniformly mean ergodic.

The following polynomial in $\mathcal{P}(^2\ell_2,\ell_2)$ satisfies the assumption

$$P(x_1, x_2, x_3, \dots) = (x_1^2, x_2^2, x_3^2, \dots).$$

Remark

In particular, if $\varphi(0) = 0$ and there is 0 < r < 1 such that $\varphi(B) \subseteq rB$ we obtain that C_{φ} is uniformly mean ergodic.

Daniel Santacreu

$H_b(B)$: The Hilbert space case

Proposition

Let $\varphi : B_H \to B_H$ be holomorphic such that

 $\varphi(B_H) \subseteq rB_H$ for some 0 < r < 1.

Then for the unique $a \in B_H$ such that $\varphi(a) = a$ we have $C_{\varphi}^n \to C_a$ uniformly on the bounded sets of $H_b(B_H)$ and C_{φ} is uniformly mean ergodic.

$H_b(B)$: The Hilbert space case

Proposition

Let $\varphi : B_H \to B_H$ be holomorphic such that

 $\varphi(B_H) \subseteq rB_H$ for some 0 < r < 1.

Then for the unique $a \in B_H$ such that $\varphi(a) = a$ we have $C_{\varphi}^n \to C_a$ uniformly on the bounded sets of $H_b(B_H)$ and C_{φ} is uniformly mean ergodic.

The existence and uniqueness of the point a is given by the Earle-Hamilton fixed point theorem.

$H^{\infty}(B)$: Power bounded and Toplogizable

Let $\varphi: B \to B$ be a holomorphic map. We have

$$\|C_{\varphi}^n(f)\| = \sup_{x \in B} |f(\varphi^n(x))| \le \sup_{x \in B} |f(x)| = \|f\|$$

for every $n \in \mathbb{N}$ and $f \in H^{\infty}(B)$.

$H^{\infty}(B)$: Power bounded and Toplogizable

Let $\varphi: B \to B$ be a holomorphic map. We have

$$\|C_{\varphi}^{n}(f)\| = \sup_{x \in B} |f(\varphi^{n}(x))| \le \sup_{x \in B} |f(x)| = \|f\|$$

for every $n \in \mathbb{N}$ and $f \in H^{\infty}(B)$.

Proposition

Every composition operator defined in $H^{\infty}(B)$ is power bounded and topologizable.

$H^{\infty}(B)$: Suficient conditions for UME

Proposition

Let $\varphi : B \to B$ be holomorphic such that $\varphi(B) \subseteq rB$ for some 0 < r < 1and $\varphi(0) = 0$. Then $C_{\varphi}^n \to C_0$ uniformly on the bounded sets of $H^{\infty}(B)$ and C_{φ} is uniformly mean ergodic.

$H^{\infty}(B)$: The Hilbert space case

Proposition

Let $\varphi: B_H \to B_H$ be holomorphic such that

 $\varphi(B_H) \subseteq rB_H$ for some 0 < r < 1.

Then for the unique $a \in B_H$ such that $\varphi(a) = a$ we have $C_{\varphi}^n \to C_a$ uniformly on the bounded sets of $H^{\infty}(B_H)$ and C_{φ} is uniformly mean ergodic.

[1] J. Bonet and P. Domański.

A note on mean ergodic composition operators on spaces of holomorphic functions.

Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 105(2):389–396, 2011.

 [2] David Jornet, Daniel Santacreu, and Pablo Sevilla-Peris. Mean ergodic composition operators on spaces of holomorphic functions on a Banach space.

J. Math. Anal. Appl., 500(2):Paper No. 125139, 16, 2021.