On the maximal extension in the mixed ultradifferentiable weight sequence setting

Gerhard Schindl - (partially) joint work with D.N. Nenning and A. Rainer supported by FWF-projects P32905-N and P33417-N

University of Vienna

WFCA22-Valladolid June 22nd, 2022

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Motivation - I

- (*) Let us consider the so-called Borel map j^{∞} (at 0) defined by $j^{\infty}(f) := (f^{(j)}(0))_{j \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}.$
- (*) f is a given smooth function. In the smooth category (written \mathcal{E}), j^{∞} is surjective but not injective (=existence of smooth flat function at 0).
- (*) Restrict j^{∞} to sub-classes of \mathcal{E} and ask for surjectivity and injectivity (on "canonical target/sequence spaces")...
- (*) We focus on so-called ultradifferentiable classes derivatives of f are weighted w.r.t. sequences M, functions ω or matrices \mathcal{M} .
- (*) In this talk: M (Roumieu- and Beurling-type first part), then *M* (only Roumieu-type - second part).

Motivation - II

- (*) Known: Surjectivity and injectivity can be characterized in terms of $M = (M_j)_{j \in \mathbb{N}}$ (satisfying weak standard assumptions).
- (*) j[∞] is injective (Mandelbrojt, Hörmander, Komatsu)
 ("Denjoy-Carleman-theorem"), if and only M is quasianalytic, i.e.

$$\sum_{j=1}^{+\infty} \frac{M_{j-1}}{M_j} = +\infty.$$

(*) j^{∞} is surjective (Petzsche), if and only if M is strong non-quasianalytic ((M.3), (γ_1)), i.e.

$$\sup_{j\in\mathbb{N}_{>0}}\frac{M_j/M_{j-1}}{j}\sum_{k\geq j}\frac{M_{k-1}}{M_k}<+\infty.$$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

→ < Ξ → </p>

Motivation - III

- (*) What happens when N is non-quasianalytic but not strongly non-quasianalytic?
- (*) A "controlled loss" of regularity is possible (Schmets and Valdivia; Jiménez-Garrido, Sanz, and S.)

Controlled loss: between N and a smaller M. - Different (!!) mixed conditions between M and N naturally appear.

- (*) Question (J. Sanz): Which sequence *M* is optimal ("the largest one") when *N* is given and fixed?
- (*) We try to answer this question now...

Sequences and conditions - |

(*) Let
$$M = (M_j)_j \in \mathbb{R}_{>0}^{\mathbb{N}}$$
 we also use $m_j := \frac{M_j}{j!}$ and $\mu_j := \frac{M_j}{M_{j-1}}$,
 $\mu_0 := 1$. W.l.o.g. $1 = M_0 \leq M_1$ (normalization).
(*) M is called *log-convex* ((M .1)) if

$$\forall j \in \mathbb{N}_{>0}: M_j^2 \leq M_{j-1}M_{j+1},$$

equivalently if $(\mu_j)_j$ is nondecreasing.

(*) Consider the set

$$\mathcal{LC} := \{ M \in \mathbb{R}^{\mathbb{N}}_{>0} : \text{ normalized, log-convex, } \lim_{j \to +\infty} (M_j)^{1/j} = +\infty \}.$$

(*) *M* has moderate growth ((*M*.2)) - write (mg)), if

$$\exists C \geq 1 \ \forall j, k \in \mathbb{N} : M_{j+k} \leq C^{j+k} M_j M_k.$$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

▶ < ∃ >

University of Vienna

Literature

Sequences and conditions - II

(*) Write $M \leq N$ if

$$\sup_{j\in\mathbb{N}_{>0}}\left(\frac{M_j}{N_j}\right)^{1/j}<+\infty.$$

(*) We call M and N equivalent, written $M \approx N$, if $M \leq N$ and $N \leq M$.

(*) Finally, write $M \leq N$ if $M_j \leq N_j$ for all $j \in \mathbb{N}$.

Gerhard Schind

Ultradifferentiable (test function) classes - 1

(*) Let
$$N \in \mathbb{R}^{\mathbb{N}}_{>0}$$
 and $h > 0$. Define the Banach space
 $\mathcal{D}_{N,h}([-1,1]) := \left\{ f \in \mathcal{E}(\mathbb{R},\mathbb{C}) : \operatorname{supp}(f) \subseteq [-1,1], \sup_{j \in \mathbb{N}, x \in \mathbb{R}} \frac{|f^{(j)}(x)|}{h^j N_j} < +\infty \right\}.$

(*) The ultradifferentiable test function class of Roumieu-type is given by

$$\mathcal{D}_{\{N\}}([-1,1]) := \varinjlim_{h>0} \mathcal{D}_{N,h}([-1,1]),$$

a countable (LB)-space.

$$\mathcal{D}_{(N)}([-1,1]) := \varprojlim_{h>0} \mathcal{D}_{N,h}([-1,1]),$$

which is a Fréchet space.

Gerhard Schindl

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

Ultradifferentiable classes - II

(*) Let
$$M \in \mathbb{R}_{\geq 0}^{\mathbb{N}}$$
 and $h > 0$. For $\mathbf{a} := (a_j)_j \in \mathbb{C}^{\mathbb{N}}$ we put
 $|\mathbf{a}|_{M,h} := \sup_{j \in \mathbb{N}} \frac{|a_j|}{h^j M_j}, \qquad \Lambda_{M,h} := \{(a_j)_j \in \mathbb{C}^{\mathbb{N}} : |\mathbf{a}|_{M,h} < +\infty\}.$

(*) Furthermore we set

$$\Lambda_{(M)} := \{(a_{\rho})_{
ho} \in \mathbb{C}^{\mathbb{N}} : \forall \ h > 0 : |\mathbf{a}|_{M,h} < +\infty\},$$

and

$$\Lambda_{\{M\}} := \{(a_p)_p \in \mathbb{C}^{\mathbb{N}} : \exists h > 0 : |\mathbf{a}|_{M,h} < +\infty\}.$$

(*) We endow $\Lambda_{(M)}$ resp. $\Lambda_{\{M\}}$ with a natural projective, respectively inductive, topology via

$$\Lambda_{(M)} = \lim_{h > 0} \Lambda_{M,h}, \qquad \Lambda_{\{M\}} = \lim_{h > 0} \Lambda_{M,h}.$$

Gerhard Schind

Ultradifferentiable classes - III

Write
$$[\cdot]$$
 if either $\{\cdot\}$ or (\cdot) .

If $M \preceq M'$, then

$$\begin{aligned} (*) \ \ \Lambda_{[M]} &\subseteq \Lambda_{[M']} \text{ and} \\ (*) \ \ \mathcal{D}_{[M]}([-1,1]) &\subseteq \mathcal{D}_{[M']}([-1,1]). \end{aligned}$$

"Denjoy-Carleman-Theorem":

Theorem

Let $N \in \mathcal{LC}$, then $\mathcal{D}_{[N]}([-1,1]) \neq \{0\}$ if and only if N is non-quasianalytic, i.e.

$$\sum_{j=1}^{+\infty} \frac{1}{\nu_j} < +\infty.$$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Classes of sequences - |

Let $N \in \mathcal{LC}$, then introduce the sets

$$\mathcal{N}_{\preceq,R} := \{ M \in \mathbb{R}^{\mathbb{N}}_{>0} : \quad \liminf_{j \to +\infty} (m_j)^{1/j} > 0, \quad M \preceq N \},$$
$$\mathcal{N}_{\prec,R} := \{ M \in \mathbb{R}^{\mathbb{N}}_{>0} : \quad \lim_{j \to +\infty} (m_j)^{1/j} = +\infty, \quad M \prec N \}$$

$$\mathcal{N}_{\leq,B} := \{ M \in \mathbb{R}^{\mathbb{N}}_{>0} : \lim_{j \to +\infty} (m_j)^{1/j} = +\infty, \quad M \leq N \}$$

(*)
$$\mathcal{N}_{\preceq,B} \subseteq \mathcal{N}_{\preceq,R}$$
,
(*) if $\liminf_{p \to +\infty} (n_j)^{1/j} > 0$, then $N \in \mathcal{N}_{\preceq,R}$,
(*) if $\lim_{p \to +\infty} (n_j)^{1/j} = +\infty$, then $N \in \mathcal{N}_{\preceq,B}$.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

.

< ∃ >

University of Vienna

Classes of sequences - II

We also introduce the smaller sets

$$\mathcal{N}_{\preceq,\mathcal{LC},R} := \{ M \in \mathcal{N}_{\preceq,R} : M \in \mathcal{LC} \},$$

and

$$\mathcal{N}_{\preceq,\mathcal{LC},B} := \{ M \in \mathcal{N}_{\preceq,B} : M \in \mathcal{LC} \}.$$

One can replace $M \leq N$ by $M \leq CN$ ("replace \leq by \leq "):

 $M \leq N$ means $M_j \leq C^j N_j$; then replace M by the equivalent sequence $M^C := (M_j/C^j)_{j \in \mathbb{N}}$.

Gerhard Schind

Relevant mixed conditions

(*) Let $N \in \mathcal{LC}$ be non-quasianalytic and $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ $(M_0 = 1)$.

(*) Write $(M, N)_{\gamma_1}$ (Chaumat/Chollet '94) if

$$\sup_{j\in\mathbb{N}_{>0}}\frac{\mu_j}{j}\sum_{k\geq j}\frac{1}{\nu_k}<+\infty.$$

(*) Obviously (N, N)_{γ1} is (γ1) for N.
(*) Write (M, N)_{SV} (Schmets/Valdivia '03) if

$$\exists s \in \mathbb{N}_{>0}: \sup_{p \in \mathbb{N}_{>0}} \frac{\lambda_{p,s}^{M,N}}{p} \sum_{k \ge p} \frac{1}{\nu_k} < +\infty,$$

with $\lambda_{p,s}^{M,N} := \sup_{0 \le j < p} \left(\frac{M_p}{s^p N_j}\right)^{1/(p-j)}.$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Literature

Known comparison of relevant mixed conditions

Let $N \in \mathcal{LC}$ be non-quasianalytic. (*) If $M \in \mathcal{N}_{\leq,\mathcal{LC},R}$ $(M \in \mathcal{N}_{\leq,\mathcal{LC},B})$, then $\forall p, s \in \mathbb{N}_{>0}$: $\lambda_{p,s}^{M,N} \leq C \min\{\mu_p, \nu_p\}$,

when $M \leq CN$. Thus

$$(M,N)_{\gamma_1} \Rightarrow (M,N)_{SV}.$$

(*) If *M* has in addition (mg), equivalently $\sup_{j \in \mathbb{N}_{>0}} \frac{\mu_j}{(M_j)^{1/j}} < +\infty$ (!!!), then

$$(M,N)_{\gamma_1} \Leftrightarrow (M,N)_{SV}.$$

(*) $(M, N)_{\gamma_1}$ resp. $(M, N)_{SV}$ is valid if and only if $(M^C, N)_{\gamma_1}$ resp. $(M^C, N)_{SV}$.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Main (known) characterizing result

By Schmets/Valdivia (and Jiménez-Garrido, Sanz, S. - formulated for $M \in \mathcal{N}_{\leq,\mathcal{LC},R}$ resp. $M \in \mathcal{N}_{\leq,\mathcal{LC},B}$) we know:

Theorem

Let $N \in \mathcal{LC}$ and $M \in \mathcal{N}_{\leq,R}$ $(M \in \mathcal{N}_{\leq,B})$. Then the following are equivalent:

(i) $j^{\infty}(\mathcal{D}_{\{N\}}([-1,1])) \supseteq \Lambda_{\{M\}}$ resp. $j^{\infty}(\mathcal{D}_{(N)}([-1,1])) \supseteq \Lambda_{(M)}$, (ii) $(M,N)_{SV}$ is valid.

Also known: (γ_1) for N is $(N, N)_{\gamma_1} \Leftrightarrow (N, N)_{SV}$.

Question: Optimal sequences for the mixed conditions and comparison between them?

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

Literature

$\overline{({\sf Known})}$ optimal sequence for $(\cdot, {\sf N})_{\gamma_1}$

Let $N \in \mathcal{LC}$ be non-quasianalytic. Let the descendant S^N be defined by its quotients

$$\sigma_p^{\boldsymbol{N}} := \frac{\tau_1 \boldsymbol{p}}{\tau_{\boldsymbol{p}}}, \quad \boldsymbol{p} \in \mathbb{N}_{>0}, \qquad \sigma_0^{\boldsymbol{N}} := 1,$$

with

$$\tau_p := \frac{p}{\nu_p} + \sum_{j \ge p} \frac{1}{\nu_j}, \quad p \ge 1.$$

Properties:

(i)
$$s^N := (S_p^N/p!)_{p \in \mathbb{N}} \in \mathcal{LC}$$
 (i.e. S^N is strongly log-convex),
(ii) $\exists C > 0 \forall p \in \mathbb{N} : \sigma_p^N \le C\nu_p$,
(iii) $(S^N, N)_{\gamma_1}$,
(iv) if N has (mg), then S^N , too.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Optimality of the descendant

Summarizing:

- (*) $S^N \in \mathcal{N}_{\leq,\mathcal{LC},B} \subseteq \mathcal{N}_{\leq,\mathcal{LC},R},$ (*) $(S^N, N)_{SV},$
- (*) if $M \in \mathcal{LC}$ with $\mu_p \leq C\nu_p$ and $(M, N)_{\gamma_1}$, then $\mu_p \leq D\sigma_p^N$ follows for some $D \geq 1$ (implies \leq -maximality),
- (*) $S^N \approx N$ if and only if N satisfies (γ_1) (if and only if $(N, N)_{SV}$).

Definition of S^N is inspired by the non-mixed approach in Petzsche; has been given by Rainer/S.

Gerhard Schindl

Optimal sequence for relation $(\cdot, N)_{SV}$

Goal: Determine the \preceq -maximal sequence L belonging to $\mathcal{N}_{\preceq,R}$ resp. $\mathcal{N}_{\preceq,B}$ and satisfying $(L, N)_{SV}$.

Let $N\in\mathcal{LC}$ and non-quasianalytic. Let $s\in\mathbb{N}_{>0}$ and define $L^s=(L^s_p)_{p\in\mathbb{N}}$ by

$$L_0^s := 1, \qquad L_p^s := s^p \min_{0 \le j \le p-1} \left\{ \left(\frac{p}{\sum_{k \ge p} \frac{1}{\nu_k}} \right)^{p-j} N_j \right\}, \quad p \in \mathbb{N}_{>0}.$$

University of Vienna

A (1) > (1) > (1)

Gerhard Schind

Theorem

Let $N \in \mathcal{LC}$ and non-quasianalytic. Then:

- (i) $(L^s, N)_{SV}$ holds true for all $s \in \mathbb{N}_{>0}$ (note that $L^s \approx L^t$ for all $s, t \in \mathbb{N}_{>0}$),
- (ii) $M \leq L^{s}$ for any $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ satisfying $(M, N)_{SV}$ and for all $s \in \mathbb{N}_{>0}$,

(iii)
$$L^{s} \preceq N$$
 for all $s \in \mathbb{N}_{>0}$.

- (*) There exists $M \in \mathcal{N}_{\preceq,\mathcal{LC},R}$ $(M \in \mathcal{N}_{\preceq,\mathcal{LC},B})$ with $(M,N)_{SV}$ take $M \equiv S^N$!
- (*) (*i*), (*ii*) and (*iii*) hold true for the log-convex minorant <u>L^s</u> as well (with (*ii*) restricted to all log-convex sequences *M*).

Gerhard Schindl

University of Vienna

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Vienna

- (*) Let $M \in \mathcal{N}_{\leq,R}$ $(M \in \mathcal{N}_{\leq,B})$ with $(M, N)_{SV}$, then $M \leq L^s$ for some/each $s \in \mathbb{N}_{>0}$.
- (*) $L^{s} \in \mathcal{N}_{\leq,B} \subseteq \mathcal{N}_{\leq,R}$. Consequently, some/each L^{s} is \leq -maximal among all $M \in \mathcal{N}_{\leq,B}$ $(M \in \mathcal{N}_{\leq,R})$ and having $(M, N)_{SV}$.
- (*) The same holds true for L^{s} instead of L^{s} .
- (*) Formally $\underline{L^s} \in \mathcal{N}_{\preceq,\mathcal{LC},B}$ is not clear since normalization might fail.
 - $\underline{L^{s}} \text{ is equivalent to } \underline{\widetilde{L^{s}}} \in \mathcal{N}_{\preceq,\mathcal{LC},B}; \ \underline{\widetilde{L^{s}}} \text{ is } \preceq \text{-maximal among all } \\ M \in \mathcal{N}_{\preceq,\mathcal{LC},B} \ (M \in \mathcal{N}_{\preceq,\mathcal{LC},R}).$

Gerhard Schind

Main characterizing result - reformulated

Theorem

Let $N \in \mathcal{LC}$. Then the set of sequences $M \in \mathcal{N}_{\preceq,R}$ $(M \in \mathcal{N}_{\preceq,B})$ and satisfying

 $j^{\infty}(\mathcal{D}_{\{N\}}([-1,1])) \supseteq \Lambda_{\{M\}}, \quad resp. \quad j^{\infty}(\mathcal{D}_{(N)}([-1,1])) \supseteq \Lambda_{(M)},$

has a maximal element which is given by some/each L^s.

Alternatively, we can use $\underline{\widetilde{L^{s}}}$ which is \preceq -maximal among all $M \in \mathcal{N}_{\preceq,\mathcal{LC},R}$ $(M \in \mathcal{N}_{\preceq,\mathcal{LC},B})$.

Note: non-q.a. is not required as an assumption; it is a necessary condition.

Gerhard Schindl

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

イロト 人間ト 人間ト 人

Testing (γ_1) with optimal sequence

Lemma

Let $N \in \mathcal{LC}$.

- (i) If N satisfies (γ_1) , i.e. N is strong non-quasianalytic, then $N \approx L^s$ for all $s \in \mathbb{N}_{>0}$.
- (ii) Conversely, if $N \approx L^s$ for some/each $s \in \mathbb{N}_{>0}$, then N satisfies (γ_1) .

Gerhard Schindl

University of Vienna

< ∃ >

Comparison of S^N and L^s - |

- (*) Automatically we have $S^N \preceq L^s$ (for some/each $s \in \mathbb{N}_{>0}$).
- (*) What about the converse?
- (*) Advantage of S^N : "Easier" to compute and better regularity properties.

Introduce

$$\liminf_{p \to +\infty} \frac{\nu_p}{p} \sum_{k \ge 2p} \frac{1}{\nu_k} > 0.$$
 (1)

Lemma

Let $N \in \mathcal{LC}$ be non-quasianalytic. If N satisfies (mg), then (1) holds true, but the converse fails in general.

Importance: (1) for N implies (mg) for $S^N \Rightarrow$ comparison between σ_j^N and $(S_j^N)^{1/j}$ is possible!

Gerhard Schind

University of Vienna

Comparison of S^N and L^s - ||

Theorem

Let $N \in \mathcal{LC}$ satisfy

$$\liminf_{p\to+\infty}\frac{\nu_p}{p}\sum_{k\geq 2p}\frac{1}{\nu_k}>0.$$

Then for all $s \in \mathbb{N}_{>0}$ we have $S^N \approx L^s$.

Thus S^N is \leq -maximal among all $M \in \mathcal{N}_{\leq,R}$ $(M \in \mathcal{N}_{\leq,B})$ and also among all $M \in \mathcal{N}_{\leq,\mathcal{LC},R}$ $(M \in \mathcal{N}_{\leq,\mathcal{LC},B})$ satisfying $(M, N)_{SV}$.

Equivalently, the inclusions $j^{\infty}(\mathcal{D}_{[N]}([-1,1])) \supseteq \Lambda_{[S^N]}$ are optimal in the ultradifferentiable setting.

Gerhard Schind

University of Vienna

- ∢ ∃ >

A difference can occur

In general $S^N \approx L^s$ fails:

Lemma

There exist non-quasianalytic $N \in \mathcal{LC}$ such that $S^N \approx L^s$ cannot hold true. In this case (γ_1) for N is violated.

- (*) The reason of failure: $p \mapsto \frac{\nu_p}{p} \sum_{k \ge p} \frac{1}{\nu_k}$ can behave very irregular/oscillating.
- (*) The construction of N: "quite technical"....
- (*) S^N is defined in terms of quotients σ^N ; L^s is given directly.
- (*) A comparison of sequences of roots and quotients is convenient; (*mg*) (for S^N) guarantees this.
- (*) Problem in the general matrix setting!

Gerhard Schind

One more mixed condition - I

- (*) Carleson (R.-case) and Ehrenpreis (B.-case) have already studied these questions.... in terms of another mixed condition for associated weight functions.
- (*) Let $M \in \mathcal{LC}$, define the associated weight function

$$\omega_M(t) := \sup_{p \in \mathbb{N}} \log\left(rac{t^p}{M_p}
ight) \quad ext{for } t > 0, \qquad \omega_M(0) := 0.$$

(*) Consider relation $(\omega_M, \omega_N)_{snq}$:

$$\exists C > 0 \ \forall t \ge 0 : \int_{1}^{+\infty} \frac{\omega_{N}(ty)}{y^{2}} dy \le C \omega_{M}(t) + C. \quad (2)$$

(*) Carleson (solving a moment problem) only treats the sufficiency of (2); Ehrenpreis shows also the necessity.

Gerhard Schindl

One more mixed condition - II

(*) (2) is crucial in the weight function setting (cf. Bonet/Meise/Taylor and Rainer/S.). Given ω (non-quasianalytic), then the heir

$$\kappa_\omega(t):=\int_1^\infty rac{\omega(ts)}{s^2} ds=t\int_t^\infty rac{\omega(s)}{s^2} ds$$

is optimal.

- (*) However, in Ehrenpreis an assumption is made on ω_N (on $\lambda_N \equiv \exp \circ \omega_N$) precisely corresponding to (mg) for N not needed for results above!
- (*) But (mg) seems to be indispensable when involving weight function techniques to prove results for the weight sequence setting (cf. Bonet/Meise/Melikhov and Rainer/S.).

(*) Note: In $(\omega_M, \omega_N)_{snq}$ the constant C is "outside" the function!!

Gerhard Schind

One more mixed condition - III

(*) How is $(\omega_M, \omega_N)_{snq}$ related to $(M, N)_{\gamma_1}$, $(M, N)_{SV}$? How about optimality? Recall: If $M \in \mathcal{LC}$, then

$$M_j = \sup_{t \ge 0} rac{t^j}{\exp(\omega_M(t))}, \quad j \in \mathbb{N}.$$

(*) Jiménez-Garrido/Rainer/Sanz/S. (Chaumat/Chollet): If $M, N \in \mathcal{LC}$ with $\mu \leq \nu$ then $(M, N)_{\gamma_1} \Rightarrow (\omega_M, \omega_N)_{snq}$ and $(\omega_M, \omega_N)_{snq} \Rightarrow (M, N)_{\gamma_1}$ if M has in addition (mg).

(*) Summarizing:

If $M,N\in\mathcal{LC}$ with $\mu\leq
u$ and M has (mg), then

$$(\omega_M, \omega_N)_{\mathsf{snq}} \Leftrightarrow (M, N)_{\gamma_1} \Leftrightarrow (M, N)_{SV}.$$

Gerhard Schind

Weight functions - I

- (*) Let $\omega : [0, \infty) \to [0, \infty)$ be continuous increasing, $\omega(0) = 0$ and $\lim_{t\to\infty} \omega(t) = \infty$.
- (*) ω is called *normalized* if $\omega(t) = 0$ for $t \in [0, 1]$.
- (*) We call ω a pre-weight function if additionally

(*)
$$\log(t) = o(\omega(t))$$
 as $t o \infty$,

*)
$$\varphi_\omega:t\mapsto\omega(e^t)$$
 is convex.

- (*) A pre-weight function ω is a weight function if it also fulfills (*) $\omega(2t) = O(\omega(t))$ as $t \to \infty$.
- (*) A pre-weight function ω is called *non-quasianalytic* if

•

$$\int_0^\infty \frac{\omega(t)}{1+t^2} dt < \infty.$$

(*) A pre-weight function ω is called *strong (non-q.a.)* if $(\omega, \omega)_{snq}$.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Weight functions - II

Let $M \in \mathcal{LC}$, then

- (*) ω_M is a normalized pre-weight function,
- (*) but in general not a weight function (very recently characterized by S.),
- (*) M is non-quasianalytic if and only if ω_M is so.

Gerhard Schind

University of Vienna

Weight matrices

(*)
$$\mathcal{M} := \{ M^{(x)} : x > 0 \}$$
 is a weight matrix if
(*) $\forall x > 0 : M^{(x)} \in \mathcal{LC}$ and
(*) $M^{(x)} \leq M^{(y)}$ if $x \leq y$.

(*) *M* is called non-quasianalytic if all *M*^(x) ∈ *M* are non-q.a.
(*) Write *M*{≤}*N* if

$$\forall \ M^{(x)} \in \mathcal{M} \ \exists \ N^{(y)} \in \mathcal{N} : \quad M^{(x)} \preceq N^{(y)}.$$

(*) *M* and *N* are R-equivalent if *M*{*≤*}*N* and *N*{*≤*}*M*.
(*) *M* is said to have R-moderate growth if

$$\forall \ M^{(x)} \exists \ M^{(y)} \exists \ C \geq 1 \ \forall \ j,k \in \mathbb{N}: \quad M^{(x)}_{j+k} \leq C^{j+k} M^{(y)}_j M^{(y)}_k.$$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

▶ < ∃ >

Ultradifferentiable weight matrix classes (of R.-type)

(*) Let $M \in \mathbb{R}^{\mathbb{N}}_{>0}.$ For h > 0 and $n \in \mathbb{N}_{>0}$ we define the Banach space

$$\mathcal{E}_{M,h}([-n,n]) := \Big\{ f \in \mathcal{E}([-n,n]) : \sup_{t \in [-n,n], k \in \mathbb{N}} \frac{|f^{(k)}(t)|}{h^k M_k} < \infty \Big\}.$$

(*) Then the Denjoy-Carleman classes of Roumieu type is given by

$$\mathcal{E}_{\{M\}}(\mathbb{R}) := \lim_{n \in \mathbb{N}_{>0}} \lim_{h \in \mathbb{N}_{>0}} \mathcal{E}_{M,h}([-n, n]).$$

(*) Finally, let
$$\mathcal{M} = \{M^{(x)} : x > 0\}$$
 and set

$$\mathcal{E}_{\{\mathcal{M}\}}(\mathbb{R}) := \lim_{n \in \mathbb{N}_{>0}} \lim_{h \in \mathbb{N}_{>0}} \lim_{M^{(x)} \in \mathcal{M}} \mathcal{E}_{M^{(x)},h}([-n,n]).$$
(a) Channel A and a set a set of a set of

(*) Classes $\Lambda_{\{\mathcal{M}\}}$ are defined analogously.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ultradifferentiable weight function classes (of R.-type)

(*) For any (normalized) pre-weight function ω consider the Young conjugate of φ_{ω} ,

$$arphi_{\omega}^{*}(s):=\sup\{st-arphi_{\omega}(t):t\geq0\},\quad s\geq0.$$

(*) Let ω be a normalized pre-weight function. For h>0 and $n\in\mathbb{N}_{>0}$ we define

$$\mathcal{E}_{\omega,h}([-n,n]) := \left\{ f \in \mathcal{E}([-n,n]) : \sup_{t \in [-n,n], k \in \mathbb{N}} \frac{|f^{(k)}(t)|}{\exp(\frac{1}{h}\varphi_{\omega}^*(hk))} < \infty \right\}$$

(*) Then the Braun-Meise-Taylor class of Roumieu type is given by

$$\mathcal{E}_{\{\omega\}}(\mathbb{R}) := \varprojlim_{n \in \mathbb{N}_{>0}} \varinjlim_{h \in \mathbb{N}_{>0}} \mathcal{E}_{\omega,h}([-n,n]).$$

(*) Classes
$$\Lambda_{\{\omega\}}$$
 are defined analogously.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

University of Vienna

Associated weight matrix - I

Let ω be a normalized pre-weight function, define $\mathcal{M}_\omega := \{W^{(x)}: x > 0\}$ by

$$W_j^{(x)} := \exp\left(\frac{1}{x}\varphi_\omega^*(xj)\right).$$

(*) *M*_ω always has R-moderate growth and
(*) *M*_ω is non-q.a. if and only if ω is non-q.a.

Gerhard Schind

Associated weight matrix - II

By Rainer/S. we know:

Theorem

Let ω be a weight function. Then (as locally convex vector spaces)

 $\mathcal{E}_{\{\omega\}}(\mathbb{R}) = \mathcal{E}_{\{\mathcal{M}_{\omega}\}}(\mathbb{R}),$

and similarly if $\mathcal{E} \leftrightarrow \Lambda$ (resp. if using other symbols/functors). Moreover, this holds for B.-type classes as well.

(*) $\mathcal{M}\{\leq\}\mathcal{N} \text{ implies } \Lambda_{\{\mathcal{M}\}} \subseteq \Lambda_{\{\mathcal{N}\}} \text{ and } \mathcal{E}_{\{\mathcal{M}\}}(\mathbb{R}) \subseteq \mathcal{E}_{\{\mathcal{N}\}}(\mathbb{R}).$ (*) Thus R-equivalent matrices give the same classes.

Gerhard Schind

University of Vienna

(日) (同) (三) (

More relevant (new) derived sequences/matrices - I

- (*) Let ω be a non-q.a. pre-weight function (set $\omega(t) := \omega(|t|)$ for $t \in \mathbb{R}$).
- (*) Consider the harmonic extension

$$egin{aligned} P_\omega(x+iy) &:= rac{|y|}{\pi} \int_{-\infty}^\infty rac{\omega(t)}{(x-t)^2+y^2} dt, & y
eq 0, \ P_\omega(x+iy) &:= \omega(x), & y = 0. \end{aligned}$$

(*) We have

$$P_{\omega}(ir) \leq rac{4}{\pi}\kappa_{\omega}(r) \leq 4P_{\omega}(ir), \quad r>0.$$

(*) We define

$$Q_k := \sup_{r>0} \frac{r^{k+\frac{1}{2}}}{\exp(\frac{1}{2}P_{\omega}(ir))}, \quad k \in \mathbb{N}.$$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

More relevant (new) derived sequences/matrices - II

(*) Let $M \in \mathcal{LC}$ be non-q.a. and set

$$\widetilde{\omega}_M(t) := \omega_M(t) + \log(1+t^2).$$

(*) Let $\mathcal{M} = \{M^{(x)} : x > 0\}$ be a non-q.a. weight matrix, put

$$\kappa_{(\mathbf{x})} := \kappa_{\widetilde{\omega}_{M^{(\mathbf{x})}}}, \quad \mathbf{K}_{j}^{(\mathbf{x})} := \exp(\varphi_{\kappa_{(\mathbf{x})}}^{*}(j)).$$

(*) Moreover, consider

$$P_{(x)} := P_{\widetilde{\omega}_{M^{(x)}}}.$$

(*) Then introduce the matrices

$$\mathcal{K} := \{ \mathcal{K}^{(x)} : x > 0 \},\$$
$$\mathcal{Q} := \{ Q^{(x)} : x > 0 \}.$$

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Relation between ${\cal K}$ and ${\cal Q}$

Theorem

Let $\mathcal{M} := \{M^{(x)} : x > 0\}$ be a non-q.a. weight matrix. Then (*) \mathcal{K} is a weight matrix such that $(K_j^{(x)}/j!)^{1/j} \to \infty$ and $K_j^{(x)}/M_j^{(x)}$ is bounded for all x > 0 and $j \in \mathbb{N}$. (*) If \mathcal{M} has R-moderate growth, then \mathcal{K} , too. (*) In this case \mathcal{K} and \mathcal{Q} are R-equivalent.

Gerhard Schind

University of Vienna

Carleson's result for matrices

Theorem

Let ${\mathcal M}$ be a non-quasianalytic weight matrix of R-moderate growth. Then

$$\Lambda_{\{\mathcal{K}\}} = \Lambda_{\{\mathcal{Q}\}} \subseteq j^{\infty}(\mathcal{E}_{\{\mathcal{M}\}}(\mathbb{R})).$$

Proof:

(*) Direct generalization of Carleson's arguments to the weight matrix setting (solving a moment problem).

$$(*)$$
 Techniques involve matrix $\mathcal Q$.

Gerhard Schindl

Schmets/Valdivia's result for matrices

Theorem

Let \mathcal{M} be a non-quasianalytic weight matrix and \mathcal{M}' be a one-parameter family of positive sequences such that $\liminf_{k\to\infty} (M'_j/j!)^{1/j} > 0$ for all $\mathcal{M}' \in \mathcal{M}'$. Then the following are equivalent:

(*i*)
$$\Lambda_{\{\mathcal{M}'\}} \subseteq j^{\infty}(\mathcal{E}_{\{\mathcal{M}\}}(\mathbb{R})).$$

(ii) The SV-condition of R.-type holds true, i.e.

$$\forall M' \in \mathcal{M}' \exists M \in \mathcal{M} : (M', M)_{SV}.$$

Proof: Follows by the definition of matrix classes and the characterization of SV-condition in the weight sequence setting.

Remark: The B.-type is NOT so easy to handle - see next talk.

Gerhard Schindl

Consequences and more (expected) derived matrices

Corollary

Let ${\mathcal{M}}$ be a non-quasianalytic weight matrix of R-moderate growth. Then

$$\forall \ x > 0 \ \exists \ y > 0 : (K^{(x)}, M^{(y)})_{SV}.$$

Now let $\mathcal{M} = \{M^{(x)} : x > 0\}$ be non-q.a. and consider for all x (set parameter s := 1 and $L := L^1$): (*) the descendant $S^{(x)}$, yielding the matrix S; (*) the sequence $L^{(x)}$, yielding the matrix \mathcal{L} ; (*) the log-convex minorant $\underline{L}^{(x)}$, yielding the matrix $\underline{\mathcal{L}}$.

Gerhard Schindl

University of Vienna

Relations between derived matrices

From the weight sequence setting we know:

$$\forall x > 0: \quad S^{(x)} \preceq \underline{L}^{(x)} \leq L^{(x)}.$$

Theorem

Let $\mathcal{M} = \{M^{(x)} : x > 0\}$ be a non-quasianalytic weight matrix of *R*-moderate growth. Then

$$\mathcal{S}\{\underline{\prec}\}\mathcal{K}\{\underline{\prec}\}\underline{\mathcal{L}}\{\underline{\prec}\}\mathcal{L}.$$

Recall that in this case \mathcal{K} and \mathcal{Q} are R-equivalent.

Gerhard Schind

On the maximal extension in the mixed ultradifferentiable weight sequence setting

Classical case - the weight function setting - I

Theorem

Let ω be a non-quasianalytic weight function. Then

$$\Lambda_{\{\kappa_{\omega}\}} = \Lambda_{\{\mathcal{K}\}} = \Lambda_{\{\mathcal{Q}\}} = \Lambda_{\{\underline{\mathcal{L}}\}},$$

and the families \mathcal{K} , \mathcal{Q} and \mathcal{L} are derived from \mathcal{M}_{ω} .

Two things to show:

- (i) The first equality: weight matrix techniques are required (R-moderate growth used!)
- (*ii*) Prove that \mathcal{K} and $\underline{\mathcal{L}}$ are R-equivalent technical...

Gerhard Schindl

University of Vienna

< ∃ >

Classical case - the weight function setting - II

Combining

- (*) the previous result and
- (*) the characterization in terms of mixed SV-condition (of R.-type) and
- (\ast) the weight matrix representations for $\omega\textsc{-ultradiff.}$ classes we get that

$$\Lambda_{\{\kappa_\omega\}} \subseteq j^\infty(\mathcal{E}_{\{\omega\}}(\mathbb{R}))$$

is optimal!

This gives back the characterization by Bonet/Meise/Taylor using completely different techniques (Functional Analysis)!

 ω is strong (non-q.a.), if and only if \mathcal{K} , \mathcal{Q} , $\underline{\mathcal{L}}$ and \mathcal{L} are all R-equivalent to \mathcal{M}_{ω} .

Gerhard Schind

Literature

Classical case - the weight sequence setting

Theorem

Let $M \in \mathcal{LC}$ be non-quasianalytic and of moderate growth. Then the derived sequences S, K, Q and L are equivalent.

Gerhard Schind

University of Vienna

For the first part see:

G. Schindl, On the maximal extension in the mixed ultradifferentiable weight sequence setting, Studia Math. 263, no. 2, 209-240, 2022, DOI: 10.4064/sm200930-17-3.

For the second part see:

A. Rainer, D.N. Nenning, and G. Schindl, On optimal solutions of the Borel problem in the Roumieu case, 2021, submitted, available online at https://arxiv.org/pdf/2112.08463.pdf.

< ∃ >