Continuously differentiable functions on compact sets

L. Frerick, L. Loosveldt, J. Wengenroth

Valladolid, June 21, 2022

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Affine-linear approximation

 $f:K \to \mathbb{R}^m$ is $C^1(K)$ if there is $df:K \to L(\mathbb{R}^d,\mathbb{R}^m)$ continuous with

$$\lim_{K\ni y\to x} \frac{|f(x)-f(y)-df(x)(x-y)|}{|x-y|} = 0 \text{ for all } x\in K.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Affine-linear approximation

 $f:K
ightarrow\mathbb{R}^m$ is $C^1(K)$ if there is $df:K
ightarrow L(\mathbb{R}^d,\mathbb{R}^m)$ continuous with

$$\lim_{K\ni y\to x} \frac{|f(x)-f(y)-df(x)(x-y)|}{|x-y|} = 0 \text{ for all } x\in K.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

Affine-linear approximation

 $f:K
ightarrow \mathbb{R}^m$ is $C^1(K)$ if there is $df:K
ightarrow L(\mathbb{R}^d,\mathbb{R}^m)$ continuous with

$$\lim_{K \ni y \to x} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

► Examples: C¹(ℝ^d | K) (Whitney),

Affine-linear approximation

 $f:K
ightarrow \mathbb{R}^m$ is $C^1(K)$ if there is $df:K
ightarrow L(\mathbb{R}^d,\mathbb{R}^m)$ continuous with

$$\lim_{K \ni y \to x} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

Examples: $C^1(\mathbb{R}^d|K)$ (Whitney), C^1 -functions on embedded manifolds

Affine-linear approximation

 $f:K
ightarrow \mathbb{R}^m$ is $C^1(K)$ if there is $df:K
ightarrow L(\mathbb{R}^d,\mathbb{R}^m)$ continuous with

$$\lim_{K \ni y \to x} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

- Examples: $C^1(\mathbb{R}^d|\mathcal{K})$ (Whitney), C^1 -functions on embedded manifolds
- Chain rule holds

Affine-linear approximation

 $f:K
ightarrow \mathbb{R}^m$ is $C^1(K)$ if there is $df:K
ightarrow L(\mathbb{R}^d,\mathbb{R}^m)$ continuous with

$$\lim_{X\ni y\to x} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

- ► Examples: C¹(ℝ^d | K) (Whitney), C¹-functions on embedded manifolds
- Chain rule holds
- Mean value inequality. γ rectifiable curve in K from x to y, $f \in C^1(K)$

 $|f(x) - f(y)| \le \|df\|_{\mathcal{C}(\mathcal{K})} \mathsf{L}(\gamma)$

Affine-linear approximation

 $f: K \to \mathbb{R}^m$ is $C^1(K)$ if there is $df: K \to L(\mathbb{R}^d, \mathbb{R}^m)$ continuous with

$$\lim_{X\ni y\to x} \frac{|f(x)-f(y)-df(x)(x-y)|}{|x-y|} = 0 \text{ for all } x\in K.$$

 $||f||_{C^{1}(K)} = ||f||_{C(K)} + \inf\{||df||_{C(K)} : df \text{ is a continuous derivative}\}.$

- Examples: $C^1(\mathbb{R}^d|K)$ (Whitney), C^1 -functions on embedded manifolds
- Chain rule holds
- Mean value inequality. γ rectifiable curve in K from x to y, $f \in C^1(K)$

 $|f(x) - f(y)| \leq \|df\|_{\mathcal{C}(\mathcal{K})} \mathsf{L}(\gamma) \text{ and } f(x) - f(y) = \int_{\gamma} df \approx \sum_{k=1}^{n} \langle df(\gamma(\tau_k)), \gamma(t_k) - \gamma(t_{k-1}) \rangle$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Affine-linear approximation

 $f: K \to \mathbb{R}^m$ is $C^1(K)$ if there is $df: K \to L(\mathbb{R}^d, \mathbb{R}^m)$ continuous with

$$\lim_{(\exists y \to x)} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

- ► Examples: C¹(ℝ^d | K) (Whitney), C¹-functions on embedded manifolds
- Chain rule holds
- Mean value inequality. γ rectifiable curve in K from x to y, $f \in C^1(K)$

 $|f(x) - f(y)| \leq \|df\|_{\mathcal{C}(\mathcal{K})} \mathsf{L}(\gamma) \text{ and } f(x) - f(y) = \int_{\gamma} df \approx \sum_{k=1}^{n} \langle df(\gamma(\tau_k)), \gamma(t_k) - \gamma(t_{k-1}) \rangle$

Theorem.

 $C^{1}(K)$ is complete if and only if K has finitely many connected components C which are pointwise Whitney regular, i.e., there are neighbourhoods U_{x} of $x \in K$ and $c_{x} > 0$ such that every $y \in C \cap U_{x}$ can be joined to x by a curve of length $\leq c_{x}|x - y|$.

Affine-linear approximation

 $f: K \to \mathbb{R}^m$ is $C^1(K)$ if there is $df: K \to L(\mathbb{R}^d, \mathbb{R}^m)$ continuous with

$$\lim_{(\exists y \to x)} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

- ► Examples: C¹(ℝ^d | K) (Whitney), C¹-functions on embedded manifolds
- Chain rule holds
- Mean value inequality. γ rectifiable curve in K from x to y, $f \in C^1(K)$

$$|f(x) - f(y)| \leq \|df\|_{\mathcal{C}(\mathcal{K})} \mathsf{L}(\gamma) \text{ and } f(x) - f(y) = \int_{\gamma} df \approx \sum_{k=1}^{n} \langle df(\gamma(\tau_k)), \gamma(t_k) - \gamma(t_{k-1}) \rangle$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem.

 $C^{1}(K)$ is complete if and only if K has finitely many connected components C which are pointwise Whitney regular, i.e., there are neighbourhoods U_{x} of $x \in K$ and $c_{x} > 0$ such that every $y \in C \cap U_{x}$ can be joined to x by a curve of length $\leq c_{x}|x - y|$.

Sufficiency from mean value inequality. Necessity: Banach-Steinhaus implies $\varphi_y(f) = \frac{f(x) - f(y)}{|x-y|}$

Affine-linear approximation

 $f: K \to \mathbb{R}^m$ is $C^1(K)$ if there is $df: K \to L(\mathbb{R}^d, \mathbb{R}^m)$ continuous with

$$\lim_{(\ni y \to x)} \frac{|f(x) - f(y) - df(x)(x - y)|}{|x - y|} = 0 \text{ for all } x \in K.$$

 $\|f\|_{C^1(\mathcal{K})} = \|f\|_{C(\mathcal{K})} + \inf\{\|df\|_{C(\mathcal{K})} : df \text{ is a continuous derivative}\}.$

- ► Examples: C¹(ℝ^d | K) (Whitney), C¹-functions on embedded manifolds
- Chain rule holds
- Mean value inequality. γ rectifiable curve in K from x to y, $f \in C^1(K)$

$$|f(x) - f(y)| \leq \|df\|_{\mathcal{C}(\mathcal{K})} \mathsf{L}(\gamma) \text{ and } f(x) - f(y) = \int_{\gamma} df \approx \sum_{k=1}^{n} \langle df(\gamma(\tau_k)), \gamma(t_k) - \gamma(t_{k-1}) \rangle$$

Theorem.

 $C^{1}(K)$ is complete if and only if K has finitely many connected components C which are pointwise Whitney regular, i.e., there are neighbourhoods U_{x} of $x \in K$ and $c_{x} > 0$ such that every $y \in C \cap U_{x}$ can be joined to x by a curve of length $\leq c_{x}|x - y|$.

Sufficiency from mean value inequality. Necessity: Banach-Steinhaus implies $|\varphi_{Y}(f)| = \left|\frac{f(x)-f(y)}{|x-y|}\right| \leq c_{x}||f||_{C^{1}(K)}$ for all $f \in C^{1}(K)$ and $y \in K \setminus \{x\}$. Construction of suitable curves by Schwartz using Arzelá-Ascoli.

• If K is the closure of its interior \mathring{K}

 $C^1_{int}(K) = \{ f \in C(K) : f|_{\mathring{K}} \in C^1(\mathring{K}), df : \mathring{K} \to L(\mathbb{R}^d, \mathbb{R}^m) \text{ extends continuously to } K \}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• If K is the closure of its interior \mathring{K}

 $C^1_{int}(K) = \{ f \in C(K) : f|_{\mathring{K}} \in C^1(\mathring{K}), df : \mathring{K} \to L(\mathbb{R}^d, \mathbb{R}^m) \text{ extends continuously to } K \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

▶ With $\|f\|_{C^1_{int}(K)} = \|f\|_{C(K)} + \|df\|_{C(K)}$ this is always Banach and $C^1(K) \subseteq C^1_{int}(K)$.

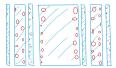
• If K is the closure of its interior \mathring{K}

 $C^1_{int}(K) = \{ f \in C(K) : f|_{\mathring{K}} \in C^1(\mathring{K}), df : \mathring{K} \to L(\mathbb{R}^d, \mathbb{R}^m) \text{ extends continuously to } K \}$

- With $\|f\|_{C_{int}^1(K)} = \|f\|_{C(K)} + \|df\|_{C(K)}$ this is always Banach and $C^1(K) \subseteq C_{int}^1(K)$.
- Example (M. Sauter). $C^1(K) \neq C^1_{int}(K)$ for $K = \overline{\Omega}$ with

$$\Omega = \left(\left([0,1] \setminus \mathsf{Cantor} \right) \times (0,1) \right) \setminus \bigcup_{n \in \mathbb{N}} B_n$$

where B_n are disjoint balls whose centres accumulate at Cantor \times [0, 1] and the sum of diam $(B_n) < 1/4$.



• If K is the closure of its interior \mathring{K}

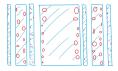
 $C^1_{int}(K) = \{ f \in C(K) : f|_{\mathring{K}} \in C^1(\mathring{K}), df : \mathring{K} \to L(\mathbb{R}^d, \mathbb{R}^m) \text{ extends continuously to } K \}$

- With $\|f\|_{C_{int}^1(K)} = \|f\|_{C(K)} + \|df\|_{C(K)}$ this is always Banach and $C^1(K) \subseteq C_{int}^1(K)$.
- Example (M. Sauter). $C^1(K) \neq C^1_{int}(K)$ for $K = \overline{\Omega}$ with

$$\Omega = \left(\left([0,1] \setminus \mathsf{Cantor} \right) \times (0,1) \right) \setminus \bigcup_{n \in \mathbb{N}} B_n$$

where B_n are disjoint balls whose centres accumulate at Cantor $\times [0, 1]$ and the sum of diam $(B_n) < 1/4$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



f(x, y) = g(x) with Cantor's staircase function $g : [0, 1] \rightarrow \mathbb{R}$.

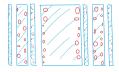
• If K is the closure of its interior \mathring{K}

 $C^{1}_{int}(K) = \{ f \in C(K) : f|_{\mathring{K}} \in C^{1}(\mathring{K}), df : \mathring{K} \to L(\mathbb{R}^{d}, \mathbb{R}^{m}) \text{ extends continuously to } K \}$

- With $\|f\|_{C_{int}^1(K)} = \|f\|_{C(K)} + \|df\|_{C(K)}$ this is always Banach and $C^1(K) \subseteq C_{int}^1(K)$.
- Example (M. Sauter). $C^1(K) \neq C^1_{int}(K)$ for $K = \overline{\Omega}$ with

$$\Omega = \left(\left([0,1] \setminus \mathsf{Cantor} \right) \times (0,1) \right) \setminus \bigcup_{n \in \mathbb{N}} B_n$$

where B_n are disjoint balls whose centres accumulate at Cantor \times [0,1] and the sum of diam $(B_n) < 1/4$.



f(x,y) = g(x) with Cantor's staircase function $g : [0,1] \to \mathbb{R}$. $f \in C^1_{int}(K)$, df = 0, and $\int_{\gamma} df \neq f(y) - f(x)$ for a horizontal line γ in K from x to y.

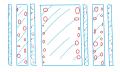
• If K is the closure of its interior \mathring{K}

 $C^1_{int}(K) = \{ f \in C(K) : f|_{\mathring{K}} \in C^1(\mathring{K}), df : \mathring{K} \to L(\mathbb{R}^d, \mathbb{R}^m) \text{ extends continuously to } K \}$

- With $\|f\|_{C^1_{int}(K)} = \|f\|_{C(K)} + \|df\|_{C(K)}$ this is always Banach and $C^1(K) \subseteq C^1_{int}(K)$.
- Example (M. Sauter). $C^1(K) \neq C^1_{int}(K)$ for $K = \overline{\Omega}$ with

$$\Omega = \left(\left([0,1] \setminus \mathsf{Cantor} \right) \times (0,1) \right) \setminus \bigcup_{n \in \mathbb{N}} B_n$$

where B_n are disjoint balls whose centres accumulate at Cantor \times [0, 1] and the sum of diam $(B_n) < 1/4$.



f(x,y) = g(x) with Cantor's staircase function $g : [0,1] \to \mathbb{R}$. $f \in C^1_{int}(K)$, df = 0, and $\int_{\gamma} df \neq f(y) - f(x)$ for a horizontal line γ in K from x to y.

Catastrophe: Compositions of C_{int}^1 -functions need not be C_{int}^1

Theorem

 $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$ for every compact set $K \subseteq \mathbb{R}^d$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem

 $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$ for every compact set $K \subseteq \mathbb{R}^d$.

Standard approximation tricks (like gluing local approximation with a partition of unity or mollifying by convolution) need Whitney regularity of K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

 $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$ for every compact set $K \subseteq \mathbb{R}^d$.

- Standard approximation tricks (like gluing local approximation with a partition of unity or mollifying by convolution) need Whitney regularity of K.
- Strategy: C¹(K) quotient of J¹(K) = {(f, df) ∈ C(K) : df derivative of f}, show density of i : D(ℝ^d) → J¹(K), φ ↦ (φ|_K, dφ|_K) by Hahn-Banach, i.e., every continuous linear functional Φ on J¹(K) which vanishes on {i(φ) : φ ∈ D(ℝ^d)} is zero.

Theorem

 $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$ for every compact set $K \subseteq \mathbb{R}^d$.

- Standard approximation tricks (like gluing local approximation with a partition of unity or mollifying by convolution) need Whitney regularity of K.
- Strategy: C¹(K) quotient of J¹(K) = {(f, df) ∈ C(K) : df derivative of f}, show density of i : D(ℝ^d) → J¹(K), φ ↦ (φ|_K, dφ|_K) by Hahn-Banach, i.e., every continuous linear functional Φ on J¹(K) which vanishes on {i(φ) : φ ∈ D(ℝ^d)} is zero.
- ▶ Hahn-Banach and Riesz-Markov-Kakutani yield measures $\nu : B(K) \to \mathbb{R}$ and $\mu : B(K) \to \mathbb{R}^d$ such that

$$\Phi(f,df) = \int_{\mathcal{K}} f d
u + \int_{\mathcal{K}} \langle df,\mu
angle$$
 and $u = \operatorname{div}(\mu)$

in the sense of distributions.

Theorem

 $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$ for every compact set $K \subseteq \mathbb{R}^d$.

- Standard approximation tricks (like gluing local approximation with a partition of unity or mollifying by convolution) need Whitney regularity of K.
- Strategy: C¹(K) quotient of J¹(K) = {(f, df) ∈ C(K) : df derivative of f}, show density of i : D(ℝ^d) → J¹(K), φ ↦ (φ|_K, dφ|_K) by Hahn-Banach, i.e., every continuous linear functional Φ on J¹(K) which vanishes on {i(φ) : φ ∈ D(ℝ^d)} is zero.
- ▶ Hahn-Banach and Riesz-Markov-Kakutani yield measures $\nu : B(K) \to \mathbb{R}$ and $\mu : B(K) \to \mathbb{R}^d$ such that

$$\Phi(f,df) = \int_{\mathcal{K}} f d
u + \int_{\mathcal{K}} \langle df, \mu
angle ext{ and }
u = \operatorname{div}(\mu)$$

in the sense of distributions.

Stanislav K. Smirnov called such a vector measure µ a solenoidal vector charge and proved in 1993 a Choquet type decomposion into very simple solenoids comming from Lipschitz curves in K.

Theorem

 $C^1(\mathbb{R}^d|K)$ is dense in $C^1(K)$ for every compact set $K \subseteq \mathbb{R}^d$.

- Standard approximation tricks (like gluing local approximation with a partition of unity or mollifying by convolution) need Whitney regularity of K.
- Strategy: C¹(K) quotient of J¹(K) = {(f, df) ∈ C(K) : df derivative of f}, show density of i : D(ℝ^d) → J¹(K), φ → (φ|_K, dφ|_K) by Hahn-Banach, i.e., every continuous linear functional Φ on J¹(K) which vanishes on {i(φ) : φ ∈ D(ℝ^d)} is zero.
- ▶ Hahn-Banach and Riesz-Markov-Kakutani yield measures $\nu : B(K) \to \mathbb{R}$ and $\mu : B(K) \to \mathbb{R}^d$ such that

$$\Phi(f,df) = \int_{\mathcal{K}} f d
u + \int_{\mathcal{K}} \langle df, \mu
angle ext{ and }
u = \operatorname{div}(\mu)$$

in the sense of distributions.

- Stanislav K. Smirnov called such a vector measure µ a solenoidal vector charge and proved in 1993 a Choquet type decomposion into very simple solenoids comming from Lipschitz curves in K.
- This decomposition can be used to show that Φ vanishes on $J^1(K)$.

Theorem.

 $C(\mathbb{R}^d|K) = C^1(K)$ with equivalent norms if and only if K has only finitely many components C which are all Whitney regular, i.e., all $x, y \in C$ can be joined by a curve of length $\leq c|x - y|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem.

 $C(\mathbb{R}^d|K) = C^1(K)$ with equivalent norms if and only if K has only finitely many components C which are all Whitney regular, i.e., all $x, y \in C$ can be joined by a curve of length $\leq c|x - y|$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open problem: Characterize algebraic equality for $d \ge 2$.

Theorem.

 $C(\mathbb{R}^d|K) = C^1(K)$ with equivalent norms if and only if K has only finitely many components C which are all Whitney regular, i.e., all $x, y \in C$ can be joined by a curve of length $\leq c|x - y|$.

Open problem: Characterize algebraic equality for $d \ge 2$.

Theorem (Whitney).

If K is the closure of its interior which is Whitney regular, then $C^1(\mathbb{R}^d|K) = C^1_{int}(K)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem.

 $C(\mathbb{R}^d|K) = C^1(K)$ with equivalent norms if and only if K has only finitely many components C which are all Whitney regular, i.e., all $x, y \in C$ can be joined by a curve of length $\leq c|x - y|$.

Open problem: Characterize algebraic equality for $d \ge 2$.

Theorem (Whitney).

If K is the closure of its interior which is Whitney regular, then $C^1(\mathbb{R}^d|K) = C^1_{int}(K)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example. There are path-connected compact sets $K = \overline{\text{Int}(K)}$ with $C^1(\mathbb{R}^2|K) = C_{int}^1(K)$ and Int(K) is not Whitney regular.

Theorem.

 $C(\mathbb{R}^d|K) = C^1(K)$ with equivalent norms if and only if K has only finitely many components C which are all Whitney regular, i.e., all $x, y \in C$ can be joined by a curve of length $\leq c|x - y|$.

Open problem: Characterize algebraic equality for $d \ge 2$.

Theorem (Whitney).

If K is the closure of its interior which is Whitney regular, then $C^1(\mathbb{R}^d|K) = C^1_{int}(K)$.

Example. There are path-connected compact sets $K = \overline{\text{Int}(K)}$ with $C^1(\mathbb{R}^2|K) = C_{int}^1(K)$ and Int(K) is not Whitney regular.

Corollary of characterization of completeness

If $K = \overline{\text{Int}(K)}$ and $C^1(K) = C^1_{int}(K)$ then K has only finitely many connected components which are pointwise Whitney regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi)$$
 for all non-isolated $\xi \in K$.

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi)$$
 for all non-isolated $\xi \in K$.

Definition. Every bounded connected component of $\mathbb{R} \setminus K$ is called a gap of K.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi)$$
 for all non-isolated $\xi \in K$.

Definition. Every bounded connected component of $\mathbb{R} \setminus K$ is called a gap of K.

Theorem.

$$C^{1}(\mathbb{R}|\mathcal{K}) = C^{1}(\mathcal{K}) \text{ if and only if} \\ \lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|x - y| : y \in G\}}{\operatorname{length}(G)} : G \subseteq (x - \varepsilon, x + \varepsilon) \text{ gap of } \mathcal{K} \right\} < \infty \text{ for all } x \in \mathcal{K}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi) \text{ for all non-isolated } \xi \in K.$$

Definition. Every bounded connected component of $\mathbb{R} \setminus K$ is called a gap of K.

Theorem.

$$C^{1}(\mathbb{R}|K) = C^{1}(K) \text{ if and only if}$$
$$\lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|x - y| : y \in G\}}{\operatorname{length}(G)} : G \subseteq (x - \varepsilon, x + \varepsilon) \text{ gap of } K \right\} < \infty \text{ for all } x \in K.$$

Examples.

• $C^1(K) \neq C^1(\mathbb{R}|K)$ for the Cantor set.

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi)$$
 for all non-isolated $\xi \in K$.

Definition. Every bounded connected component of $\mathbb{R} \setminus K$ is called a gap of K.

Theorem.

$$C^{1}(\mathbb{R}|\mathcal{K}) = C^{1}(\mathcal{K}) \text{ if and only if}$$
$$\lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|x - y| : y \in G\}}{\operatorname{length}(G)} : G \subseteq (x - \varepsilon, x + \varepsilon) \text{ gap of } \mathcal{K} \right\} < \infty \text{ for all } x \in \mathcal{K}.$$

Examples.

• $C^1(K) \neq C^1(\mathbb{R}|K)$ for the Cantor set.

▶ For
$$x_n \searrow 0$$
 and $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ we have $C^1(K) = C^1(\mathbb{R}|K) \Leftrightarrow \limsup_{n \to \infty} \frac{x_n}{x_n - x_{n+1}} < \infty$

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi)$$
 for all non-isolated $\xi \in K$.

Definition. Every bounded connected component of $\mathbb{R} \setminus K$ is called a gap of K.

Theorem.

$$C^{1}(\mathbb{R}|\mathcal{K}) = C^{1}(\mathcal{K}) \text{ if and only if}$$
$$\lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|x - y| : y \in G\}}{\operatorname{length}(G)} : G \subseteq (x - \varepsilon, x + \varepsilon) \text{ gap of } \mathcal{K} \right\} < \infty \text{ for all } x \in \mathcal{K}.$$

Examples.

• $C^1(K) \neq C^1(\mathbb{R}|K)$ for the Cantor set.

- ▶ For $x_n \searrow 0$ and $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ we have $C^1(K) = C^1(\mathbb{R}|K) \Leftrightarrow \limsup_{n \to \infty} \frac{x_n}{x_n x_{n+1}} < \infty$
- Yes for $x_n = a^{-n}$ with a > 1 but No for $x_n = n^p$ with p < 0.

If $K = \overline{\text{Int}(K)}$, then $C^1(K) = C^1_{int}(K)$ if and only if K is a finite union of closed intervals.

Theorem (Whitney).

$$f \in C^1(\mathbb{R}|K) \Leftrightarrow \lim_{x,y \to \xi} \frac{f(x) - f(y)}{x - y} = f'(\xi)$$
 for all non-isolated $\xi \in K$.

Definition. Every bounded connected component of $\mathbb{R} \setminus K$ is called a gap of K.

Theorem.

$$C^{1}(\mathbb{R}|\mathcal{K}) = C^{1}(\mathcal{K}) \text{ if and only if}$$
$$\lim_{\varepsilon \to 0} \sup \left\{ \frac{\sup\{|x - y| : y \in G\}}{\operatorname{length}(G)} : G \subseteq (x - \varepsilon, x + \varepsilon) \text{ gap of } \mathcal{K} \right\} < \infty \text{ for all } x \in \mathcal{K}.$$

Examples.

- $C^1(K) \neq C^1(\mathbb{R}|K)$ for the Cantor set.
- ▶ For $x_n \searrow 0$ and $K = \{0\} \cup \{x_n : n \in \mathbb{N}\}$ we have $C^1(K) = C^1(\mathbb{R}|K) \Leftrightarrow \limsup_{n \to \infty} \frac{x_n}{x_n x_{n+1}} < \infty$
- Yes for $x_n = a^{-n}$ with a > 1 but No for $x_n = n^p$ with p < 0.
- ▶ $K = \{0\} \cup \{2^{-n} : n \in \mathbb{N}\}$ and L = [0, 1] both satisfy $C^1(M) = C^1(\mathbb{R}^d | M)$ but $K \times L$ does not.