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f(x,y) = g(x) with Cantor's staircase function g : [0,1] — R.
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f(x,y) = g(x) with Cantor's staircase function g : [0,1] — R. f € C} (K),

int

df =0, and f,y df # f(y) — f(x) for a horizontal line y in K from x to y.

» Catastrophe: Compositions of C1

. 1
ni-functions need not be C; !
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» Stanislav K. Smirnov called such a vector measure p a solenoidal vector charge
and proved in 1993 a Choquet type decomposion into very simple solenoids
comming from Lipschitz curves in K.

> This decomposition can be used to show that ® vanishes on J}(K).
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Corollary of characterization of completeness

If K =1Int(K) and C!(K) = CL.(K) then K has only finitely many connected
components which are pointwise Whitney regular.
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The one-dimensional case K C R.

If K =Int(K), then C1(K) = CL.(K) if and only if K is a finite union of closed
intervals.

Theorem (Whitney).

f(x) f(y)

— == = f’(&) for all non-isolated ¢ € K.

f € CY(R|K) & lim
x,y—§&

Definition. Every bounded connected component of R\ K is called a gap of K.

Theorem

CY(R|K) = C(K) if and only if
sup{|x —y| : y € G}
length(G)

lim sup
e—0

:GC(x—g,x+¢) gapofK}<ooforaIIx€K.

Examples

> CY(K) # CY(R|K) for the Cantor set.
> For xp \ 0 and K = {0} U {x, : n € N} we have C}(K) = C}(R|K) <

lim sup < o0
n—o0o

» Yes for x, = a— " with a > 1 but No for x, = nP with p < 0.

> K={0}uU{2=":n€ N} and L = [0,1] both satisfy C1(M) = C'(RY|M) but
K x L does not.

X*Xﬂ




