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Continuously differentiable functions on K ⊆ Rd compact

Affine-linear approximation

f : K → Rm is C1(K) if there is df : K → L(Rd ,Rm) continuous with

lim
K3y→x

|f (x)− f (y)− df (x)(x − y)|
|x − y |

= 0 for all x ∈ K .

‖f ‖C1(K) = ‖f ‖C(K) + inf{‖df ‖C(K) : df is a continuous derivative}.

I Examples: C1(Rd |K) (Whitney),

C1-functions on embedded manifolds

I Chain rule holds
I Mean value inequality. γ rectifiable curve in K from x to y , f ∈ C1(K)

|f (x)− f (y)| ≤ ‖df ‖C(K)L(γ)

and f (x)− f (y) =

∫
γ
df ≈

n∑
k=1

〈df (γ(τk )), γ(tk )−γ(tk−1)〉

Theorem.

C1(K) is complete if and only if K has finitely many connected components C which
are pointwise Whitney regular, i.e., there are neighbourhoods Ux of x ∈ K and cx > 0
such that every y ∈ C ∩ Ux can be joined to x by a curve of length ≤ cx |x − y |.

Sufficiency from mean value inequality. Necessity: Banach-Steinhaus implies

|

ϕy (f )

|

=

∣∣∣

f (x)−f (y)
|x−y|

∣∣∣ ≤ cx‖f ‖C1(K) for all f ∈ C1(K) and y ∈ K \ {x}. Construction

of suitable curves by Schwartz using Arzelá-Ascoli.
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Continuously differentiable functions on K ⊆ Rd compact

Affine-linear approximation

f : K → Rm is C1(K) if there is df : K → L(Rd ,Rm) continuous with

lim
K3y→x

|f (x)− f (y)− df (x)(x − y)|
|x − y |

= 0 for all x ∈ K .

‖f ‖C1(K) = ‖f ‖C(K) + inf{‖df ‖C(K) : df is a continuous derivative}.

I Examples: C1(Rd |K) (Whitney), C1-functions on embedded manifolds
I Chain rule holds
I Mean value inequality. γ rectifiable curve in K from x to y , f ∈ C1(K)

|f (x)− f (y)| ≤ ‖df ‖C(K)L(γ) and f (x)− f (y) =

∫
γ
df ≈

n∑
k=1

〈df (γ(τk )), γ(tk )−γ(tk−1)〉

Theorem.

C1(K) is complete if and only if K has finitely many connected components C which
are pointwise Whitney regular, i.e., there are neighbourhoods Ux of x ∈ K and cx > 0
such that every y ∈ C ∩ Ux can be joined to x by a curve of length ≤ cx |x − y |.

Sufficiency from mean value inequality. Necessity: Banach-Steinhaus implies

|

ϕy (f )

|

=

∣∣∣

f (x)−f (y)
|x−y|

∣∣∣ ≤ cx‖f ‖C1(K) for all f ∈ C1(K) and y ∈ K \ {x}. Construction

of suitable curves by Schwartz using Arzelá-Ascoli.
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Extension of derivatives to the boundary
I If K is the closure of its interior K̊

C1
int(K) = {f ∈ C(K) : f |K̊ ∈ C1(K̊), df : K̊ → L(Rd ,Rm) extends continuously to K}

I With ‖f ‖C1
int (K) = ‖f ‖C(K) + ‖df ‖C(K) this is always Banach and

C1(K) ⊆ C1
int(K).

I Example (M. Sauter). C1(K) 6= C1
int(K) for K = Ω with

Ω =

(
([0, 1] \ Cantor)× (0, 1)

)
\
⋃
n∈N

Bn

where Bn are disjoint balls whose centres accumulate at Cantor ×[0, 1] and the
sum of diam(Bn) < 1/4.

f (x , y) = g(x) with Cantor’s staircase function g : [0, 1]→ R. f ∈ C1
int(K),

df = 0, and
∫
γ df 6= f (y)− f (x) for a horizontal line γ in K from x to y .

I Catastrophe: Compositions of C1
int -functions need not be C1

int !
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Approximation.

Theorem

C1(Rd |K) is dense in C1(K) for every compact set K ⊆ Rd .

I Standard approximation tricks (like gluing local approximation with a partition of
unity or mollifying by convolution) need Whitney regularity of K .

I Strategy: C1(K) quotient of J1(K) = {(f , df ) ∈ C(K) : df derivative of f }, show
density of i : D(Rd )→ J1(K), ϕ 7→ (ϕ|K , dϕ|K ) by Hahn-Banach, i.e., every
continuous linear functional Φ on J1(K) which vanishes on {i(ϕ) : ϕ ∈ D(Rd )} is
zero.

I Hahn-Banach and Riesz-Markov-Kakutani yield measures ν : B(K)→ R and
µ : B(K)→ Rd such that

Φ(f , df ) =

∫
K
fdν +

∫
K
〈df , µ〉 and ν = div(µ)

in the sense of distributions.

I Stanislav K. Smirnov called such a vector measure µ a solenoidal vector charge
and proved in 1993 a Choquet type decomposion into very simple solenoids
comming from Lipschitz curves in K .

I This decomposition can be used to show that Φ vanishes on J1(K).
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Equalities in C 1(Rd |K ) ⊆ C 1(K ) ⊆ C 1
int(K ).

Theorem.

C(Rd |K) = C1(K) with equivalent norms if and only if K has only finitely many
components C which are all Whitney regular, i.e., all x , y ∈ C can be joined by a
curve of length ≤ c|x − y |.

Open problem: Characterize algebraic equality for d ≥ 2.

Theorem (Whitney).

If K is the closure of its interior which is Whitney regular, then C1(Rd |K) = C1
int(K).

Example. There are path-connected compact sets K = Int(K) with
C1(R2|K) = C1

int(K) and Int(K) is not Whitney regular.

Corollary of characterization of completeness

If K = Int(K) and C1(K) = C1
int(K) then K has only finitely many connected

components which are pointwise Whitney regular.
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The one-dimensional case K ⊆ R.
If K = Int(K), then C1(K) = C1

int(K) if and only if K is a finite union of closed
intervals.

Theorem (Whitney).

f ∈ C1(R|K) ⇔ lim
x,y→ξ

f (x)−f (y)
x−y

= f ′(ξ) for all non-isolated ξ ∈ K .

Definition. Every bounded connected component of R \ K is called a gap of K.

Theorem.

C1(R|K) = C1(K) if and only if

lim
ε→0

sup

{
sup{|x − y | : y ∈ G}

length(G)
: G ⊆ (x − ε, x + ε) gap of K

}
<∞ for all x ∈ K .

Examples.

I C1(K) 6= C1(R|K) for the Cantor set.

I For xn ↘ 0 and K = {0} ∪ {xn : n ∈ N} we have C1(K) = C1(R|K) ⇔
lim sup
n→∞

xn
xn−xn+1

<∞

I Yes for xn = a−n with a > 1 but No for xn = np with p < 0.

I K = {0} ∪ {2−n : n ∈ N} and L = [0, 1] both satisfy C1(M) = C1(Rd |M) but
K × L does not.
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